


Bagaimana untuk Memilih Baris DataFrame Dengan Cekap Dalam Julat Tarikh Tertentu dalam Python?
Memilih Baris DataFrame Dalam Julat Tarikh
Dalam Python, DataFrames ialah alat yang berkuasa untuk menyimpan dan memanipulasi data jadual. Satu tugas yang biasa dihadapi ialah menapis baris berdasarkan julat tarikh yang ditentukan. Untuk mencapainya, kami mempunyai pilihan berikut:
Kaedah 1: Menggunakan Boolean Mask
Jika DataFrame anda mengandungi lajur tarikh dengan jenis data datetime64[ns], anda boleh membuat topeng boolean untuk memilih baris yang termasuk dalam yang dikehendaki julat:
# Ensure date column is a datetime64 series df['date'] = pd.to_datetime(df['date']) # Create a boolean mask mask = (df['date'] > start_date) & (df['date'] <p><strong>Kaedah 2: Menetapkan DatetimeIndex</strong></p><p>Satu lagi pendekatan yang cekap ialah menetapkan lajur tarikh sebagai indeks DataFrame, mencipta DatetimeIndex:</p><pre class="brush:php;toolbar:false">df = df.set_index(['date']) # Select rows using index slicing sub_df = df.loc[start_date:end_date]
Kaedah ini amat berguna untuk pemilihan berdasarkan tarikh yang kerap, kerana ia memberikan prestasi yang lebih pantas berbanding menggunakan topeng boolean.
Contoh:
Pertimbangkan DataFrame berikut:
>>> df value date 0 0.2 2021-06-01 1 0.3 2021-06-05 2 0.4 2021-06-10 3 0.5 2021-06-15
Untuk memilih baris bagi bulan Jun 2021 , kita boleh menggunakan salah satu kaedah:
Kaedah 1: Boolean Mask
mask = (df['date'] > '2021-06-01') & (df['date'] <p><strong>Kaedah 2: DatetimeIndex</strong></p><pre class="brush:php;toolbar:false">df = df.set_index(['date']) sub_df = df.loc['2021-06-01':'2021-06-30']
Kedua-dua kaedah akan mengembalikan sub-DataFrame berikut:
>>> sub_df value date 0 0.2 2021-06-01 1 0.3 2021-06-05 2 0.4 2021-06-10 3 0.5 2021-06-15
Atas ialah kandungan terperinci Bagaimana untuk Memilih Baris DataFrame Dengan Cekap Dalam Julat Tarikh Tertentu dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Buat tatasusunan pelbagai dimensi dengan numpy dapat dicapai melalui langkah-langkah berikut: 1) Gunakan fungsi numpy.array () untuk membuat array, seperti Np.Array ([[1,2,3], [4,5,6]]) untuk membuat array 2D; 2) Gunakan np.zeros (), np.ones (), np.random.random () dan fungsi lain untuk membuat array yang diisi dengan nilai tertentu; 3) Memahami sifat bentuk dan saiz array untuk memastikan bahawa panjang sub-array adalah konsisten dan mengelakkan kesilapan; 4) Gunakan fungsi np.reshape () untuk mengubah bentuk array; 5) Perhatikan penggunaan memori untuk memastikan bahawa kod itu jelas dan cekap.

Broadcastinginginnumpyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.itsImplifiescode, enhancesreadability, andboostsperformance.here'showitworks: 1) smallerarraysarepaddedwithonestomatchdimensions.2) CompatibeSt

Forpythondatastorage, chooselistsforflexabilityWithMixedDatatypes, array.arrayformemory-efficienthomogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatileButlessefficefientfientfientfientfientfientfientfientfientfientfientfientforydodeSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShoFficeSforaydataSetShoSforayDataSetsforayDataSetsforayDataSetsforaydataSetShiSforayDodeSforayDodeSforaydataSetRaydataSetRaydataSetRaydataSet

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1) listscanholdelementsofdifferenttypes, 2) thearedynamic, membolehkanEaseasyAdditionsandremoVals, 3) theofferintuitiitiveoperationslikeslicing, tetapi4).

ToAccessElementsInapyThonArray, useIndexing: my_array [2] AccessestHeTheRdeLement, returning3.pythonuseszero-berasaskanIndexing.1) USE sitiveandnegativeindexing: my_list [0] forthefirstelement, my_list [-1] forthelast.2) menggunakanSlicingForarangange: my_list [1: 5] ekstrakSelemen

Artikel membincangkan kemustahilan pemahaman tuple di Python kerana kekaburan sintaks. Alternatif seperti menggunakan tuple () dengan ekspresi penjana dicadangkan untuk mencipta tupel dengan cekap. (159 aksara)

Artikel ini menerangkan modul dan pakej dalam Python, perbezaan, dan penggunaannya. Modul adalah fail tunggal, manakala pakej adalah direktori dengan fail __init__.py, menganjurkan modul yang berkaitan secara hierarki.

Artikel membincangkan docstrings dalam python, penggunaan, dan faedah mereka. Isu Utama: Kepentingan Docstrings untuk Dokumentasi Kod dan Kebolehcapaian.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)
