cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana untuk Memisahkan Pandas DataFrame kepada Berbilang DataFrame Berdasarkan Nilai Unik Lajur?

How to Split a Pandas DataFrame into Multiple DataFrames Based on a Column's Unique Values?

Memisahkan Pandas DataFrame Berdasarkan Nilai Lajur Menggunakan Groupby

Artikel ini membentangkan penyelesaian kepada cabaran membahagikan DataFrame kepada beberapa bahagian berdasarkan pada nilai unik dalam lajur tertentu.

Pertimbangkan perkara berikut DataFrame:

import pandas as pd

df = pd.DataFrame({
    "N0_YLDF": [6.286333, 6.317000, 6.324889, 6.320667, 6.325556, 6.359000, 6.359000, 6.361111, 6.360778, 6.361111],
    "ZZ": [2, 6, 6, 5, 5, 6, 6, 7, 7, 6],
    "MAT": [11.669069, 11.669069, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454]
})

Matlamatnya ialah untuk mencipta DataFrame baharu yang mempunyai berbilang lajur untuk lajur "N0_YLDF", dengan setiap lajur sepadan dengan nilai unik dalam lajur "ZZ". Untuk mencapai matlamat ini, kita boleh menggunakan fungsi groupby().

grouped_df = df.groupby("ZZ")

Fungsi groupby() mencipta objek pandas.core.groupby.groupby.DataFrameGroupBy, yang mewakili DataFrame dengan pembahagian kumpulan mengikut nilai dalam lajur yang ditentukan. Dalam kes ini, kami mempunyai empat kumpulan:

print(grouped_df.groups)

# Output
{2: [0], 6: [1, 2, 5, 6, 9], 5: [3, 4], 7: [7, 8]}

Untuk mendapatkan DataFrames individu bagi setiap kumpulan, kami boleh menggunakan pemahaman senarai:

split_dfs = [grouped_df.get_group(key) for key in grouped_df.groups]

Kaedah get_group() mengembalikan DataFrame yang mengandungi baris kepunyaan kumpulan yang ditentukan.

Senarai split_dfs yang terhasil mengandungi empat DataFrames, setiap satu mewakili nilai yang berbeza dalam lajur "ZZ".

Sebagai contoh, untuk mengakses DataFrame untuk kumpulan dengan nilai "ZZ" sebanyak 6, anda boleh menggunakan:

split_df_6 = split_dfs[1]

Ini akan memberi anda DataFrame dengan baris berikut:

   N0_YLDF   ZZ        MAT
1  6.317000   6  11.669069
2  6.324889   6  11.516454
5  6.359000   6  11.516454
6  6.359000   6  11.516454
9  6.361111   6  11.516454

Dengan menggunakan fungsi groupby() dan get_group() kaedah, anda boleh membahagikan DataFrame dengan berkesan kepada beberapa bahagian berdasarkan nilai dalam lajur yang ditentukan.

Atas ialah kandungan terperinci Bagaimana untuk Memisahkan Pandas DataFrame kepada Berbilang DataFrame Berdasarkan Nilai Unik Lajur?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Menyenaraikan senarai di Python: Memilih kaedah yang betulMenyenaraikan senarai di Python: Memilih kaedah yang betulMay 14, 2025 am 12:11 AM

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Bagaimana untuk menggabungkan dua senarai dalam Python 3?Bagaimana untuk menggabungkan dua senarai dalam Python 3?May 14, 2025 am 12:09 AM

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Rentetan senarai concatenate pythonRentetan senarai concatenate pythonMay 14, 2025 am 12:08 AM

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

Pelaksanaan Python, apa itu?Pelaksanaan Python, apa itu?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Python: Apakah ciri -ciri utamaPython: Apakah ciri -ciri utamaMay 14, 2025 am 12:02 AM

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python: pengkompil atau penterjemah?Python: pengkompil atau penterjemah?May 13, 2025 am 12:10 AM

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?May 13, 2025 am 12:07 AM

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Gelung Python: Kesalahan yang paling biasaGelung Python: Kesalahan yang paling biasaMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Nordhold: Sistem Fusion, dijelaskan
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.