Beli Saya Kopi☕
*Siaran saya menerangkan tentang QMNIST.
QMNIST() boleh menggunakan set data QMNIST seperti yang ditunjukkan di bawah:
*Memo:
- Argumen pertama ialah root(Required-Type:str or pathlib.Path). *Laluan mutlak atau relatif boleh dilakukan.
- Argumen ke-2 ialah apa(Pilihan-Lalai:Tiada-Jenis:str). *"kereta api"(60,000 imej), "ujian"(60,000 imej), "test10k"(10,000 imej), "test50k"(50,000 imej) atau "nist"(402,953 imej) boleh ditetapkan padanya.
- Argumen ke-3 ialah compat(Pilihan-Lalai:True-Type:bool). *Jika Benar, nombor kelas bagi setiap imej dikembalikan (untuk keserasian dengan pemuat data MNIST) manakala jika Salah, tensor 1D bagi maklumat qmnist penuh dikembalikan.
- Argumen ke-4 ialah hujah kereta(Pilihan-Lalai:Jenis-Benar:bool):
*Memo:
- Ia diabaikan jika yang bukan Tiada.
- Jika Benar, data kereta api(60,000 imej) digunakan manakala jika Salah, data ujian(60,000 imej) digunakan.
- Terdapat argumen transformasi(Pilihan-Lalai:Tiada-Jenis:boleh dipanggil). *transform= mesti digunakan.
- Terdapat hujah target_transform(Optional-Default:None-Type:callable). *target_transform= mesti digunakan.
- Terdapat hujah muat turun(Optional-Default:False-Type:bool):
*Memo:
- muat turun= mesti digunakan.
- Jika Benar, set data dimuat turun dari internet dan diekstrak (dibuka zip) ke akar.
- Jika ia Benar dan set data sudah dimuat turun, ia akan diekstrak.
- Jika ia Benar dan set data sudah dimuat turun dan diekstrak, tiada apa yang berlaku.
- Ia sepatutnya Palsu jika set data sudah dimuat turun dan diekstrak kerana ia lebih pantas.
- Anda boleh memuat turun dan mengekstrak set data secara manual dari sini ke mis. data/QMNIST/mentah/.
from torchvision.datasets import QMNIST train_data = QMNIST( root="data" ) train_data = QMNIST( root="data", what=None, compat=True, train=True, transform=None, target_transform=None, download=False ) train_data = QMNIST( root="data", what="train", train=False ) test_data1 = QMNIST( root="data", train=False ) test_data1 = QMNIST( root="data", what="test", train=True ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k", compat=False ) nist_data = QMNIST( root="data", what="nist" ) l = len l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data) # (60000, 60000, 10000, 50000, 402953) train_data # Dataset QMNIST # Number of datapoints: 60000 # Root location: data # Split: train train_data.root # 'data' train_data.what # 'train' train_data.compat # True train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method qmnist.download of dataset qmnist number datapoints: root location: data split: train> train_data[0] # (<pil.image.image image mode="L" size="28x28">, 5) test_data3[0] # (<pil.image.image image mode="L" size="28x28">, # tensor([3, 4, 2424, 51, 33, 261051, 0, 0])) train_data[1] # (<pil.image.image image mode="L" size="28x28">, 0) test_data3[1] # (<pil.image.image image mode="L" size="28x28">, # tensor([8, 1, 522, 60, 38, 55979, 0, 0])) train_data[2] # (<pil.image.image image mode="L" size="28x28">, 4) test_data3[2] # (<pil.image.image image mode="L" size="28x28">, # tensor([9, 4, 2496, 115, 39, 269531, 0, 0])) train_data[3] # (<pil.image.image image mode="L" size="28x28">, 1) test_data3[3] # (<pil.image.image image mode="L" size="28x28">, # tensor([5, 4, 2427, 77, 35, 261428, 0, 0])) train_data[4] # (<pil.image.image image mode="L" size="28x28">, 9) test_data3[4] # (<pil.image.image image mode="L" size="28x28">, # tensor([7, 4, 2524, 69, 37, 272828, 0, 0])) train_data.classes # ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', # '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine'] </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import QMNIST train_data = QMNIST( root="data", what="train" ) test_data1 = QMNIST( root="data", what="test" ) test_data2 = QMNIST( root="data", what="test10k" ) test_data3 = QMNIST( root="data", what="test50k" ) nist_data = QMNIST( root="data", what="nist" ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data1) show_images(data=test_data2) show_images(data=test_data3) show_images(data=nist_data)
Atas ialah kandungan terperinci QMNIST dalam PyTorch. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Artikel ini membincangkan peranan persekitaran maya di Python, memberi tumpuan kepada menguruskan kebergantungan projek dan mengelakkan konflik. Ia memperincikan penciptaan, pengaktifan, dan faedah mereka dalam meningkatkan pengurusan projek dan mengurangkan isu pergantungan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),