cari
Rumahpembangunan bahagian belakangTutorial PythonAutomatikkan Pemberitahuan Slack dengan Graf Menggunakan Fungsi Cloud Run dan Cloud Scheduler

Baru-baru ini saya membina sistem untuk mengautomasikan pemberitahuan Slack dengan graf yang menggambarkan kiraan sesi selama 7 hari yang lalu. Ini dicapai menggunakan gabungan fungsi Cloud Run untuk pemprosesan data dan penjanaan graf serta Cloud Scheduler untuk menjadualkan pelaksanaan.

Tinjauan Perlaksanaan

Fungsi Cloud Run

Fungsi Cloud Run menanyakan BigQuery untuk mengambil data sesi, menggunakan Matplotlib untuk membuat carta garisan dan kemudian menghantar carta kepada Slack melalui API Slack. Langkah berikut menggariskan proses persediaan.

Berikut ialah kod untuk main.py. Sebelum menjalankan, anda perlu menetapkan SLACK_API_TOKEN dan SLACK_CHANNEL_ID sebagai pembolehubah persekitaran. Anda boleh membiarkannya kosong buat masa ini, kerana kami akan menyediakannya kemudian.

import os
import matplotlib.pyplot as plt
from google.cloud import bigquery
from datetime import datetime, timedelta
import io
import pytz
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError

def create_weekly_total_sessions_chart(_):
    SLACK_TOKEN = os.environ.get('SLACK_API_TOKEN')
    SLACK_CHANNEL_ID = os.environ.get('SLACK_CHANNEL_ID')

    client = bigquery.Client()

    # Calculate the date range for the last 7 days
    jst = pytz.timezone('Asia/Tokyo')
    today = datetime.now(jst)
    start_date = (today - timedelta(days=7)).strftime('%Y-%m-%d')
    end_date = (today - timedelta(days=1)).strftime('%Y-%m-%d')

    query = f"""
        SELECT 
            DATE(created_at) AS date,
            COUNT(DISTINCT session_id) AS unique_sessions
        FROM `<project>.<dataset>.summary_all`
        WHERE created_at BETWEEN '{start_date} 00:00:00' AND '{end_date} 23:59:59'
        GROUP BY date
        ORDER BY date;
    """

    query_job = client.query(query)
    results = query_job.result()

    # Prepare data for the graph
    dates = []
    session_counts = []
    for row in results:
        dates.append(row['date'].strftime('%Y-%m-%d'))
        session_counts.append(row['unique_sessions'])

    # Generate the graph
    plt.figure()
    plt.plot(dates, session_counts, marker='o')
    plt.title('Unique Session Counts (Last 7 Days)')
    plt.xlabel('Date')
    plt.ylabel('Unique Sessions')
    plt.xticks(rotation=45)
    plt.tight_layout()

    # Save the graph as an image
    image_binary = io.BytesIO()
    plt.savefig(image_binary, format='png')
    image_binary.seek(0)

    # Send the graph to Slack
    client = WebClient(token=SLACK_TOKEN)
    try:
        response = client.files_upload_v2(
            channel=SLACK_CHANNEL_ID,
            file_uploads=[{
                "file": image_binary,
                "filename": "unique_sessions.png",
                "title": "Unique Session Counts (Last 7 Days)"
            }],
            initial_comment="Here are the session counts for the last 7 days!"
        )
    except SlackApiError as e:
        return f"Error uploading file: {e.response['error']}"

    return "Success"
</dataset></project>

Kebergantungan

Buat fail requirements.txt dan sertakan kebergantungan berikut:

functions-framework==3.*
google-cloud-bigquery
matplotlib
slack_sdk
pytz

Memberi Akses kepada Fungsi Cloud Run

Untuk membenarkan Cloud Scheduler atau perkhidmatan lain menggunakan fungsi Cloud Run anda, anda perlu menetapkan peranan roles/run.invoker kepada entiti yang sesuai. Gunakan arahan berikut untuk melakukan ini:

gcloud functions add-invoker-policy-binding create-weekly-total-sessions-chart \
      --region="asia-northeast1" \
      --member="MEMBER_NAME"

Ganti MEMBER_NAME dengan salah satu daripada yang berikut:

  • Akaun perkhidmatan untuk Penjadual Awan: serviceAccount:scheduler-account@example.iam.gserviceaccount.com
  • Untuk akses awam (tidak disyorkan): semuaPengguna

Menyediakan Penjadual Awan

Gunakan Penjadual Awan untuk mengautomasikan pelaksanaan fungsi setiap hari Isnin pada 10:00 PG (JST). Berikut ialah contoh konfigurasi:

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

Konfigurasi API Slack

Untuk mendayakan fungsi Cloud Run anda menghantar pemberitahuan Slack, ikut langkah berikut:

  1. Pergi ke Slack API dan buat apl baharu.
  2. Tetapkan Skop Token Bot berikut di bawah OAuth & Kebenaran:
    • saluran:baca
    • sembang:tulis
    • fail:tulis

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

  1. Pasang apl ke ruang kerja Slack anda dan salin Token OAuth Pengguna Bot.

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

  1. Tambahkan apl pada saluran Slack tempat anda ingin menyiarkan pemberitahuan.

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

  1. Salin ID saluran dan tampalkannya, bersama-sama dengan Bot Token, ke dalam pembolehubah persekitaran SLACK_CHANNEL_ID dan SLACK_API_TOKEN untuk fungsi Cloud Run anda.

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

Keputusan Akhir

Setelah semuanya disediakan, saluran Slack anda akan menerima pemberitahuan mingguan dengan graf seperti ini:

Automate Slack Notifications with Graphs Using Cloud Run Functions and Cloud Scheduler

Atas ialah kandungan terperinci Automatikkan Pemberitahuan Slack dengan Graf Menggunakan Fungsi Cloud Run dan Cloud Scheduler. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Kenapa array secara amnya lebih cekap memori daripada senarai untuk menyimpan data berangka?Kenapa array secara amnya lebih cekap memori daripada senarai untuk menyimpan data berangka?May 05, 2025 am 12:15 AM

ArraysareGenerallymorememememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1) arraysstoreelementsinacontiguousblock, reducingoverheadfrointersormetadata.2)

Bagaimana anda boleh menukar senarai python ke array python?Bagaimana anda boleh menukar senarai python ke array python?May 05, 2025 am 12:10 AM

ToConvertapythonlisttoanarray, usetheArraymodule: 1) importThearraymodule, 2) createalist, 3) UseArray (typecode, list) toConvertit, spesifyingthetypecodelike'i'forintegers.ThisconversionOptimizesMogenhomogeneousdata, enHomerMogeneShomogeneousdata, enHomerMogeneousdata, enhomoMogenerDataShomaSdata, enhomoMogenhomogeneousdata,

Bolehkah anda menyimpan jenis data yang berbeza dalam senarai python yang sama? Beri contoh.Bolehkah anda menyimpan jenis data yang berbeza dalam senarai python yang sama? Beri contoh.May 05, 2025 am 12:10 AM

Senarai Python boleh menyimpan pelbagai jenis data. Senarai contoh mengandungi integer, rentetan, nombor titik terapung, boolean, senarai bersarang, dan kamus. Senarai fleksibiliti adalah berharga dalam pemprosesan data dan prototaip, tetapi ia perlu digunakan dengan berhati -hati untuk memastikan kebolehbacaan dan pemeliharaan kod.

Apakah perbezaan antara tatasusunan dan senarai di Python?Apakah perbezaan antara tatasusunan dan senarai di Python?May 05, 2025 am 12:06 AM

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

Modul apa yang biasa digunakan untuk membuat tatasusunan di Python?Modul apa yang biasa digunakan untuk membuat tatasusunan di Python?May 05, 2025 am 12:02 AM

Themostcomonlyedmoduleforcreatingarraysinpythonisnumpy.1) numpyprovidesefficienttoolsforarrayoperations, idealfornumericaldata.2) arrayscanbecreatedingingnp.array () for1dand2dstructures

Bagaimana anda menambah elemen ke senarai python?Bagaimana anda menambah elemen ke senarai python?May 04, 2025 am 12:17 AM

ToAppendElementStoapyThonList, useTheAppend () methodforsingleelements, extend () formultipleelements, andInsert () forspecificposition.1) useAppend () foraddingOneElementAttheend.2)

Bagaimana anda membuat senarai python? Beri contoh.Bagaimana anda membuat senarai python? Beri contoh.May 04, 2025 am 12:16 AM

TOCREATEAPYTHONLIST, USESQUAREBRACKETS [] danSeparatateItemSwithCommas.1) listsaredynamicandCanHoldMixedDatypes.2) UseAppend (), mengalih keluar (), danSlicingFormApulation.3)

Bincangkan kes penggunaan dunia sebenar di mana penyimpanan dan pemprosesan data berangka yang cekap adalah kritikal.Bincangkan kes penggunaan dunia sebenar di mana penyimpanan dan pemprosesan data berangka yang cekap adalah kritikal.May 04, 2025 am 12:11 AM

Dalam bidang kewangan, penyelidikan saintifik, penjagaan perubatan dan AI, adalah penting untuk menyimpan dan memproses data berangka dengan cekap. 1) Dalam Kewangan, menggunakan memori yang dipetakan fail dan perpustakaan Numpy dapat meningkatkan kelajuan pemprosesan data dengan ketara. 2) Dalam bidang penyelidikan saintifik, fail HDF5 dioptimumkan untuk penyimpanan data dan pengambilan semula. 3) Dalam penjagaan perubatan, teknologi pengoptimuman pangkalan data seperti pengindeksan dan pembahagian meningkatkan prestasi pertanyaan data. 4) Dalam AI, data sharding dan diedarkan latihan mempercepatkan latihan model. Prestasi dan skalabiliti sistem dapat ditingkatkan dengan ketara dengan memilih alat dan teknologi yang tepat dan menimbang perdagangan antara kelajuan penyimpanan dan pemprosesan.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!