


Perbandingan Nilai Berganda dalam Java: Menangani Ralat Ketepatan
Membandingkan nilai berganda dalam Java boleh menjadi tugas yang sukar disebabkan kemungkinan ralat ketepatan. Perbandingan mudah, seperti yang ditunjukkan di bawah, mungkin membawa kepada hasil yang tidak dijangka:
double a = 1.000001; double b = 0.000001; boolean result = (a - b == 1.0); // False
Kod ini mencetak palsu kerana operasi tolak menghasilkan 0.9999999999999999, yang tidak sama dengan 1.0. Untuk mengatasi isu ini, kita memerlukan kaedah perbandingan yang lebih tepat.
Salah satu pendekatan ialah mengira perbezaan mutlak antara kedua-dua nilai dan membandingkannya dengan nilai toleransi yang kecil. Contohnya:
double c = Math.abs(a - b - 1.0); boolean result = (c <p>Kod ini memperkenalkan toleransi 0.000001, jadi selagi perbezaan mutlak antara c dan 1.0 berada dalam julat ini, perbandingan akan dinilai kepada benar. Kaedah Math.abs() memastikan bahawa nilai mutlak dipertimbangkan, tanpa mengambil kira sebarang perbezaan tanda.</p><p>Dengan menggunakan teknik ini, kita boleh mengambil kira kemungkinan ralat ketepatan dan melakukan perbandingan nilai berganda yang boleh dipercayai. Pendekatan ini amat berguna apabila bekerja dengan data titik terapung, di mana perbandingan kesaksamaan yang tepat tidak selalunya praktikal.</p>
Atas ialah kandungan terperinci Bagaimana untuk Membandingkan Nilai Berganda dalam Java dan Mengelakkan Ralat Ketepatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Artikel ini menganalisis empat kerangka JavaScript teratas (React, Angular, Vue, Svelte) pada tahun 2025, membandingkan prestasi, skalabilitas, dan prospek masa depan mereka. Walaupun semuanya kekal dominan kerana komuniti dan ekosistem yang kuat, popul mereka yang relatif

Artikel ini menangani kelemahan CVE-2022-1471 dalam Snakeyaml, kecacatan kritikal yang membolehkan pelaksanaan kod jauh. Ia memperincikan bagaimana peningkatan aplikasi boot musim bunga ke snakeyaml 1.33 atau lebih lama mengurangkan risiko ini, menekankan bahawa kemas kini ketergantungan

Node.js 20 dengan ketara meningkatkan prestasi melalui penambahbaikan enjin V8, terutamanya pengumpulan sampah yang lebih cepat dan I/O. Ciri -ciri baru termasuk sokongan webassembly yang lebih baik dan alat penyahpepijatan halus, meningkatkan produktiviti pemaju dan kelajuan aplikasi.

Artikel ini membincangkan pelaksanaan caching pelbagai peringkat di Java menggunakan kafein dan cache jambu untuk meningkatkan prestasi aplikasi. Ia meliputi persediaan, integrasi, dan faedah prestasi, bersama -sama dengan Pengurusan Dasar Konfigurasi dan Pengusiran PRA Terbaik

Kelas kelas Java melibatkan pemuatan, menghubungkan, dan memulakan kelas menggunakan sistem hierarki dengan bootstrap, lanjutan, dan pemuat kelas aplikasi. Model delegasi induk memastikan kelas teras dimuatkan dahulu, yang mempengaruhi LOA kelas tersuai

Artikel ini meneroka kaedah untuk berkongsi data antara langkah -langkah timun, membandingkan konteks senario, pembolehubah global, lulus argumen, dan struktur data. Ia menekankan amalan terbaik untuk mengekalkan, termasuk penggunaan konteks ringkas, deskriptif

Artikel ini meneroka mengintegrasikan pengaturcaraan berfungsi ke dalam Java menggunakan ekspresi Lambda, API Streams, rujukan kaedah, dan pilihan. Ia menyoroti faedah seperti kebolehbacaan dan kebolehkerjaan kod yang lebih baik melalui kesimpulan dan kebolehubahan

Iceberg, format meja terbuka untuk dataset analitik yang besar, meningkatkan prestasi data dan skalabiliti. Ia menangani batasan parket/orc melalui pengurusan metadata dalaman, membolehkan evolusi skema yang cekap, perjalanan masa, serentak w


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.
