


Mencipta Lajur Baharu Berdasarkan Nilai daripada Berbilang Lajur Menggunakan Fungsi dalam Panda
Apabila bekerja dengan bingkai data dalam Pandas, anda mungkin perlu membuat lajur baharu berdasarkan nilai daripada berbilang lajur sedia ada. Senario biasa timbul apabila fungsi tersuai perlu digunakan pada set lajur mengikut baris untuk menentukan nilai lajur baharu.
Senario Contoh
Pertimbangkan rangka data berikut dengan enam berkaitan etnik lajur penunjuk:
df = pd.DataFrame({ 'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], 'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], 'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1] })
Matlamatnya adalah untuk mencipta lajur baharu bernama 'label_bangsa' yang mengelaskan setiap baris berdasarkan kriteria berikut:
- Jika ERI_Hispanik bersamaan dengan 1, kembalikan "Hispanik".
- Jika jumlah semua lajur ERI bukan Hispanik (ERI_AmerInd_AKNatv, ERI_Black_Asian, ERI_Black_Asian .Amer, ERI_HI_PacIsl dan ERI_White) lebih besar daripada 1, kembalikan "Dua atau Lebih".
- Untuk sebarang nilai bukan sifar lain dalam lajur ERI, kembalikan label perlumbaan yang sepadan (cth., "A/I AK Native", "Asian ", "Hitam/AA", "Haw/Pac Isl.", atau "Putih").
Penyelesaian
Penyelesaian melibatkan dua langkah: mencipta fungsi tersuai untuk melaksanakan pengelasan dan menggunakan fungsi itu pada rangka data mengikut baris.
1. Mentakrifkan Fungsi Tersuai
def label_race(row): if row['ERI_Hispanic'] == 1: return 'Hispanic' elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1: return 'Two or More' elif row['ERI_AmerInd_AKNatv'] == 1: return 'A/I AK Native' elif row['ERI_Asian'] == 1: return 'Asian' elif row['ERI_Black_Afr.Amer'] == 1: return 'Black/AA' elif row['ERI_HI_PacIsl'] == 1: return 'Haw/Pac Isl.' elif row['ERI_White'] == 1: return 'White' else: return 'Other'
Fungsi ini mengambil satu baris bingkai data sebagai input dan mengembalikan label perlumbaan yang sesuai berdasarkan kriteria yang disediakan.
2. Menggunakan Fungsi pada Bingkai Data
Untuk mencipta lajur 'race_label' baharu, gunakan fungsi apply() bersama-sama dengan axis=1 parameter untuk menggunakan fungsi label_race pada setiap baris bingkai data.
df['race_label'] = df.apply(label_race, axis=1)
Bingkai data yang terhasil dengan lajur baharu dipaparkan di bawah:
ERI_Hispanic ERI_AmerInd_AKNatv ERI_Asian ERI_Black_Afr.Amer ERI_HI_PacIsl ERI_White \ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 0 5 0 0 0 0 0 1 6 0 0 1 0 0 1 7 0 0 0 0 1 1 8 0 0 0 1 0 0 9 0 0 0 0 0 1 race_label 0 White 1 Hispanic 2 White 3 White 4 Other 5 White 6 Two or More 7 White 8 Haw/Pac Isl. 9 White
Atas ialah kandungan terperinci Bagaimana untuk Mencipta Lajur Label Perlumbaan Baharu dalam Panda Berdasarkan Lajur Berbilang Etnik?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

ArraysareGenerallymorememememory-efficientthanlistsforstoringnumericaldataduetotheirfixed-sizenatureanddirectmemoryaccess.1) arraysstoreelementsinacontiguousblock, reducingoverheadfrointersormetadata.2)

ToConvertapythonlisttoanarray, usetheArraymodule: 1) importThearraymodule, 2) createalist, 3) UseArray (typecode, list) toConvertit, spesifyingthetypecodelike'i'forintegers.ThisconversionOptimizesMogenhomogeneousdata, enHomerMogeneShomogeneousdata, enHomerMogeneousdata, enhomoMogenerDataShomaSdata, enhomoMogenhomogeneousdata,

Senarai Python boleh menyimpan pelbagai jenis data. Senarai contoh mengandungi integer, rentetan, nombor titik terapung, boolean, senarai bersarang, dan kamus. Senarai fleksibiliti adalah berharga dalam pemprosesan data dan prototaip, tetapi ia perlu digunakan dengan berhati -hati untuk memastikan kebolehbacaan dan pemeliharaan kod.

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

Themostcomonlyedmoduleforcreatingarraysinpythonisnumpy.1) numpyprovidesefficienttoolsforarrayoperations, idealfornumericaldata.2) arrayscanbecreatedingingnp.array () for1dand2dstructures

ToAppendElementStoapyThonList, useTheAppend () methodforsingleelements, extend () formultipleelements, andInsert () forspecificposition.1) useAppend () foraddingOneElementAttheend.2)

TOCREATEAPYTHONLIST, USESQUAREBRACKETS [] danSeparatateItemSwithCommas.1) listsaredynamicandCanHoldMixedDatypes.2) UseAppend (), mengalih keluar (), danSlicingFormApulation.3)

Dalam bidang kewangan, penyelidikan saintifik, penjagaan perubatan dan AI, adalah penting untuk menyimpan dan memproses data berangka dengan cekap. 1) Dalam Kewangan, menggunakan memori yang dipetakan fail dan perpustakaan Numpy dapat meningkatkan kelajuan pemprosesan data dengan ketara. 2) Dalam bidang penyelidikan saintifik, fail HDF5 dioptimumkan untuk penyimpanan data dan pengambilan semula. 3) Dalam penjagaan perubatan, teknologi pengoptimuman pangkalan data seperti pengindeksan dan pembahagian meningkatkan prestasi pertanyaan data. 4) Dalam AI, data sharding dan diedarkan latihan mempercepatkan latihan model. Prestasi dan skalabiliti sistem dapat ditingkatkan dengan ketara dengan memilih alat dan teknologi yang tepat dan menimbang perdagangan antara kelajuan penyimpanan dan pemprosesan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini
