Beberapa Pakej Python
Bar Kemajuan dan TQDM:
Untuk melaksanakan bar kemajuan bagi tugasan seperti gelung, pemprosesan fail atau muat turun.
from progress.bar import ChargingBar bar = ChargingBar('Processing', max=20) for i in range(20): # Do some work bar.next() bar.finish()
Output:
Processing ████████████████████████████████ 100%
TQDM: Serupa dengan bar kemajuan tetapi lebih mudah untuk disediakan daripada bar kemajuan.
from tqdm import tqdm import time for i in tqdm(range(100)): time.sleep(0.1)
Output:
100%|██████████████████████████████████████| 100/100 [00:00 <p><strong>Matplotlib:</strong></p> <p>Matplotlib digunakan untuk mencipta visualisasi statik, animasi dan interaktif.<br> </p> <pre class="brush:php;toolbar:false">import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] plt.plot(x, y, label='Linear Growth', color='blue', linestyle='--', marker='o') plt.title("Line Plot Example") plt.xlabel("X-axis") plt.ylabel("Y-axis") plt.legend() plt.show()
Output:
Numpy:
NumPy (Numerical Python) ialah perpustakaan Python asas untuk pengkomputeran berangka. Ia menyediakan sokongan untuk bekerja dengan tatasusunan berbilang dimensi yang besar (seperti 1-D,2-D,3-D) dan matriks, bersama-sama dengan koleksi fungsi matematik untuk beroperasi pada tatasusunan ini dengan cekap.
Contoh:
import numpy as np # 1D array arr1 = np.array([1, 2, 3, 4]) # 2D array arr2 = np.array([[1, 2], [3, 4]]) print(arr1, arr2)
Output:
[1 2 3 4] [[1 2] [3 4]]
Panda:
Ia digunakan untuk manipulasi dan analisis data dengan Siri(senarai) dan DataFrame(jadual atau hamparan).
Contoh:
import pandas x=[1,2,3] y=pandas.Series(x,index=["no1","no2","no3"]) print(y)
Output:
no1 1 no2 2 no3 3 dtype: int64
Atas ialah kandungan terperinci Pakej Task-Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Pythonlistsareimplementedasdynamicarrays, notlinkedlists.1) thearestoredincontiguousmemoryblocks, yangMayrequireReAllocationWhenAppendingItems, ImpactingPormance.2) LinkedListSwouldOfferefficientInsertions/DeletionsButsCoweCcess

PythonoffersfourmainmethodstoremoveelementsFromalist: 1) Keluarkan (nilai) RemoveStHefirStoccurrenceFavalue, 2) Pop (index) RemoveRandReturnSanelementAtaspeciedIndex, 3)

Ralat toresolvea "kebenaran" yang mana -mana, berikut: 1) checkandadjustthescript'spermissionsingchmod xmyscript.shtomakeitexecutable.2) EnsurethescriptislocatedInadirectoryHeryouhaveVerPiSs, suchasyoursory, suchasyourshy, suchasyourperhysh, suchasyourshy.

ArraysarecrucialinpythonimageProcessingastheyenableefficientmanipulationandanalysisysysyisfimagedata.1) imagesareconvertedtonumpyarrays, walikasicaleimagesas2darraysandcolorimagesas3darrays.2) ArraysAllowForveSbeBerat

ArraysaresinicantantlyfasterthanlistsforoperationsbenefitingFromDirectMemoryAccessandFixed-Sizestructures.1) AccessingingElements: arraysprovideConstant-timeaccessduetocontiguousmemoryStorage.2)

ArraysareBetterforelement-wiseoperationsduetofasteraccessandoptimizedImplementations.1) arrayshavecontiguousmemoryfordirectaccess, enhancingperformance.2) listsareflexibleButslowerduetopotentiahyiLys.3)

Operasi matematik keseluruhan array di Numpy dapat dilaksanakan dengan cekap melalui operasi vektor. 1) Gunakan pengendali mudah seperti tambahan (ARR 2) untuk melaksanakan operasi pada tatasusunan. 2) Numpy menggunakan perpustakaan bahasa C yang mendasari, yang meningkatkan kelajuan pengkomputeran. 3) Anda boleh melakukan operasi kompleks seperti pendaraban, pembahagian, dan eksponen. 4) Perhatikan operasi penyiaran untuk memastikan bahawa bentuk array bersesuaian. 5) Menggunakan fungsi numpy seperti np.sum () dapat meningkatkan prestasi dengan ketara.

Di Python, terdapat dua kaedah utama untuk memasukkan elemen ke dalam senarai: 1) Menggunakan kaedah memasukkan (indeks, nilai), anda boleh memasukkan elemen pada indeks yang ditentukan, tetapi memasukkan pada permulaan senarai besar tidak cekap; 2) Menggunakan kaedah append (nilai), tambahkan elemen pada akhir senarai, yang sangat berkesan. Untuk senarai besar, disarankan untuk menggunakan append () atau pertimbangkan menggunakan array deque atau numpy untuk mengoptimumkan prestasi.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan
