Rumah >pembangunan bahagian belakang >Tutorial Python >Bagaimanakah Saya Boleh Mewajarkan Elemen dengan Cekap dalam Tatasusunan NumPy?
Mewajarkan Tatasusunan NumPy
Pengenalan
Dalam Python, NumPy menyediakan alatan yang cekap untuk pengiraan berangka . Satu cabaran biasa ialah mewajarkan elemen dalam tatasusunan NumPy, menjajarkannya ke kiri, kanan, atas atau bawah. Artikel ini membentangkan penyelesaian yang dipertingkat menggunakan pendekatan vektor.
Penyelesaian Vektor
Fungsi justify membenarkan elemen dalam tatasusunan 2D, menolaknya ke yang ditentukan sebelah.
def justify(a, invalid_val=0, axis=1, side='left'): justified_mask = np.sort(a!=invalid_val, axis=axis) if (side=='up') or (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[a!=invalid_val] else: out.T[justified_mask.T] = a.T[a.T!=invalid_val] return out
Penggunaan
a = np.array([[1, 0, 2, 0], [3, 0, 4, 0], [5, 0, 6, 0], [0, 7, 0, 8]]) print(justify(a, axis=0, side='up')) # Justify values vertically "up" print(justify(a, axis=0, side='down')) # Justify values vertically "down" print(justify(a, axis=1, side='left')) # Justify values horizontally "left" print(justify(a, axis=1, side='right')) # Justify values horizontally "right"
Output
[[1, 7, 2, 8] [3, 0, 4, 0] [5, 0, 6, 0] [0, 0, 0, 0]] [[0, 0, 0, 0] [1, 0, 2, 0] [3, 0, 4, 0] [5, 7, 6, 8]] [[1, 2, 0, 0] [3, 4, 0, 0] [5, 6, 0, 0] [0, 7, 0, 8]] [[0, 0, 1, 2] [0, 0, 3, 4] [0, 0, 5, 6] [0, 0, 7, 8]]
Pelanjutan kepada Kes Generik
Fungsi justify_nd memanjangkan pendekatan ini untuk mewajarkan elemen dalam ndarray mana-mana dimensi.
def justify_nd(a, invalid_val, axis, side): justified_mask = np.sort(a!=invalid_val, axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) pushax = lambda a: np.moveaxis(a, axis, -1) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[a!=invalid_val] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(a!=invalid_val)] return out
Penggunaan (Kes Generik)
a = np.array([[[54, 57, 0, 77], [77, 0, 0, 31], [46, 0, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [ 0, 47, 0, 87], [82, 19, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [29, 0, 0, 49], [42, 75, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [44, 10, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]]) print(justify_nd(a, invalid_val=0, axis=0, side='front')) # Justify first dimension "front" print(justify_nd(a, invalid_val=0, axis=1, side='front')) # Justify second dimension "front" print(justify_nd(a, invalid_val=0, axis=2, side='front')) # Justify third dimension "front" print(justify_nd(a, invalid_val=0, axis=2, side='end')) # Justify third dimension "end"
Output
[[[54, 57, 0, 77], [77, 47, 0, 31], [46, 19, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [29, 10, 0, 87], [82, 75, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 38], [44, 0, 0, 49], [42, 0, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 0], [ 0, 0, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]] [[[54, 57, 68, 77], [77, 22, 0, 31], [46, 0, 0, 98], [98, 0, 0, 75]], [[49, 47, 57, 98], [82, 19, 0, 87], [79, 89, 0, 90], [ 0, 0, 0, 74]], [[29, 75, 84, 49], [42, 41, 0, 67], [42, 0, 0, 33], [ 0, 0, 0, 0]], [[44, 10, 0, 38], [63, 14, 0, 0], [89, 0, 0, 0], [ 0, 0, 0, 0]]] [[[ 0, 54, 57, 77], [ 0, 0, 77, 31], [ 0, 0, 46, 98], [98, 22, 68, 75]], [[ 0, 0, 49, 98], [ 0, 0, 47, 87], [ 0, 82, 19, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [ 0, 0, 29, 49], [ 0, 42, 75, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [ 0, 0, 44, 10], [ 0, 0, 0, 63], [ 0, 0, 89, 14]]]
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Mewajarkan Elemen dengan Cekap dalam Tatasusunan NumPy?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!