


Nilai berganda pengimbas - InputMismatchException Diselesaikan
Menghadapi InputMismatchException apabila menggunakan pengimbas untuk membaca nilai berganda adalah isu biasa yang dihadapi oleh pembangun Java. Pengecualian ini berlaku apabila token yang diambil daripada input tidak sepadan dengan jenis data yang dijangkakan atau berada di luar julat untuk jenis tersebut.
Masalah:
Pertimbangkan kod berikut :
double gas, efficiency, distance, cost; Scanner scanner = new Scanner(System.in); System.out.print("Enter the number of gallons of gas in the tank: "); gas = scanner.nextDouble(); System.out.print("Enter the fuel efficiency: "); efficiency = scanner.nextDouble();
Apabila menjalankan kod ini dan memasukkan nilai seperti "5.1" untuk kedua-dua gas dan kecekapan, ia melemparkan InputMismatchException.
Punca:
Tempat lalai yang digunakan oleh pengimbas mungkin tidak sepadan dengan format yang dijangkakan bagi nilai input. Sebagai contoh, dalam tempat yang "," digunakan sebagai pembatas perpuluhan, input seperti "5,1" akan ditafsirkan sebagai nilai berganda yang sah, manakala dalam tempat yang "." digunakan sebagai pembatas, ia tidak akan.
Penyelesaian:
Untuk memintas isu ini, adalah perlu untuk menentukan tempat untuk pengimbas menggunakan useLocale() kaedah.
Scanner scanner = new Scanner(System.in).useLocale(Locale.US);
Dengan menetapkan tempattempat kepada Locale.US, pengimbas akan menjangkakan nilai dalam format AS, di mana "." digunakan untuk pembatas perpuluhan.
Penjelasan:
Kaedah useLocale() membenarkan pembangun mentakrifkan tempat yang digunakan oleh pengimbas untuk menghurai nilai. Ini memastikan bahawa pengimbas menjangkakan nilai dalam format yang betul untuk tempat yang ditentukan.
Atas ialah kandungan terperinci Bagaimana untuk Menyelesaikan InputMismatchException Apabila Membaca Nilai Berganda dengan Pengimbas Java?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Artikel ini menganalisis empat kerangka JavaScript teratas (React, Angular, Vue, Svelte) pada tahun 2025, membandingkan prestasi, skalabilitas, dan prospek masa depan mereka. Walaupun semuanya kekal dominan kerana komuniti dan ekosistem yang kuat, popul mereka yang relatif

Artikel ini menangani kelemahan CVE-2022-1471 dalam Snakeyaml, kecacatan kritikal yang membolehkan pelaksanaan kod jauh. Ia memperincikan bagaimana peningkatan aplikasi boot musim bunga ke snakeyaml 1.33 atau lebih lama mengurangkan risiko ini, menekankan bahawa kemas kini ketergantungan

Artikel ini membincangkan pelaksanaan caching pelbagai peringkat di Java menggunakan kafein dan cache jambu untuk meningkatkan prestasi aplikasi. Ia meliputi persediaan, integrasi, dan faedah prestasi, bersama -sama dengan Pengurusan Dasar Konfigurasi dan Pengusiran PRA Terbaik

Kelas kelas Java melibatkan pemuatan, menghubungkan, dan memulakan kelas menggunakan sistem hierarki dengan bootstrap, lanjutan, dan pemuat kelas aplikasi. Model delegasi induk memastikan kelas teras dimuatkan dahulu, yang mempengaruhi LOA kelas tersuai

Iceberg, format meja terbuka untuk dataset analitik yang besar, meningkatkan prestasi data dan skalabiliti. Ia menangani batasan parket/orc melalui pengurusan metadata dalaman, membolehkan evolusi skema yang cekap, perjalanan masa, serentak w

Node.js 20 dengan ketara meningkatkan prestasi melalui penambahbaikan enjin V8, terutamanya pengumpulan sampah yang lebih cepat dan I/O. Ciri -ciri baru termasuk sokongan webassembly yang lebih baik dan alat penyahpepijatan halus, meningkatkan produktiviti pemaju dan kelajuan aplikasi.

Artikel ini meneroka kaedah untuk berkongsi data antara langkah -langkah timun, membandingkan konteks senario, pembolehubah global, lulus argumen, dan struktur data. Ia menekankan amalan terbaik untuk mengekalkan, termasuk penggunaan konteks ringkas, deskriptif

Artikel ini meneroka mengintegrasikan pengaturcaraan berfungsi ke dalam Java menggunakan ekspresi Lambda, API Streams, rujukan kaedah, dan pilihan. Ia menyoroti faedah seperti kebolehbacaan dan kebolehkerjaan kod yang lebih baik melalui kesimpulan dan kebolehubahan


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.
