


Cetak cantik tatasusunan NumPy tanpa tatatanda saintifik dan dengan ketepatan yang diberikan
Apabila mencetak tatasusunan NumPy apungan, ia selalunya menghasilkan beberapa perpuluhan dan menggunakan format saintifik, menjadikannya sukar dibaca, terutamanya untuk tatasusunan berdimensi rendah. Memandangkan tatasusunan NumPy perlu dicetak sebagai rentetan, ini menimbulkan persoalan mencari penyelesaian untuk isu ini.
Menggunakan numpy.set_printoptions membolehkan anda menetapkan ketepatan yang diingini untuk output anda. Dengan menetapkan pilihan ini, anda boleh mengawal bilangan tempat perpuluhan yang dipaparkan.
Untuk meningkatkan lagi kebolehbacaan, anda boleh melumpuhkan tatatanda saintifik menggunakan pilihan sekat. Ini memastikan nombor kecil dipaparkan dalam tatatanda standard.
import numpy as np x = np.random.random(10) print(x) # [ 0.07837821 0.48002108 0.41274116 0.82993414 0.77610352 0.1023732 # 0.51303098 0.4617183 0.33487207 0.71162095] np.set_printoptions(precision=3) print(x) # [ 0.078 0.48 0.413 0.83 0.776 0.102 0.513 0.462 0.335 0.712]
y = np.array([1.5e-10, 1.5, 1500]) print(y) # [ 1.500e-10 1.500e+00 1.500e+03] np.set_printoptions(suppress=True) print(y) # [ 0. 1.5 1500. ]
Jika anda menggunakan NumPy versi 1.15.0 atau lebih baru, anda boleh memanfaatkan pengurus konteks numpy.printoptions untuk aplikasi cetakan setempat pilihan. Dalam konteks, tetapan cetakan yang diingini digunakan, tetapi kembali kepada tetapan lalai di luar.
x = np.random.random(10) with np.printoptions(precision=3, suppress=True): print(x) # [ 0.073 0.461 0.689 0.754 0.624 0.901 0.049 0.582 0.557 0.348]
Untuk mengelakkan sifar daripada dialih keluar dari penghujung terapung, anda boleh menggunakan parameter pemformat dalam np.set_printoptions. Parameter ini membolehkan anda menentukan fungsi format untuk setiap jenis data.
np.set_printoptions(formatter={'float': '{: 0.3f}'.format}) print(x) # Output: [ 0.078 0.480 0.413 0.830 0.776 0.102 0.513 0.462 0.335 0.712]
Atas ialah kandungan terperinci Bagaimana Mencetak Tatasusunan NumPy Cantik Tanpa Notasi Saintifik dan dengan Ketepatan Tertentu?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Sintaks asas untuk pengirim senarai python adalah senarai [Mula: Berhenti: Langkah]. 1. Start adalah indeks elemen pertama yang disertakan, 2.Stop adalah indeks elemen pertama yang dikecualikan, dan 3. Step menentukan saiz langkah antara elemen. Hirisan tidak hanya digunakan untuk mengekstrak data, tetapi juga untuk mengubah suai dan membalikkan senarai.

ListsOutPerFormAraySin: 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData, dan3) MemoryeficiencyForSparsedata, ButmayHaveslightPerformancecostSincertaor.

ToConvertapythonarraytoalist, usethelist () constructororageneratorexpression.1) importTheArrayModuleAndCreateeanArray.2) uselist (arr) atau [xforxinarr] toConvertittoalist, urusanPengerasiPormanceAndMemoryeficiencyForlargedatasets.

ChoosearraysoverListSinpythonforbetterperformanceandMemoryeficiencySpecificscenarios.1) largenumericaldatasets: arraysreducememoryusage.2) Prestasi-CRITICALICALLY:

Di Python, anda boleh menggunakan gelung, menghitung dan menyenaraikan pemantauan ke senarai melintasi; Di Java, anda boleh menggunakan tradisional untuk gelung dan dipertingkatkan untuk gelung untuk melintasi tatasusunan. 1. Kaedah Traversal Senarai Python termasuk: untuk gelung, penghitungan dan pemahaman senarai. 2. Java Array Traversal Kaedah termasuk: tradisional untuk gelung dan dipertingkatkan untuk gelung.

Artikel ini membincangkan pernyataan baru "Match" Python yang diperkenalkan dalam versi 3.10, yang berfungsi sebagai setara dengan menukar pernyataan dalam bahasa lain. Ia meningkatkan kebolehbacaan kod dan menawarkan manfaat prestasi ke atas tradisional if-elif-el

Kumpulan Pengecualian dalam Python 3.11 Membenarkan mengendalikan pelbagai pengecualian secara serentak, meningkatkan pengurusan ralat dalam senario serentak dan operasi kompleks.

Fungsi anotasi dalam python Tambah metadata ke fungsi untuk pemeriksaan jenis, dokumentasi, dan sokongan IDE. Mereka meningkatkan kebolehbacaan kod, penyelenggaraan, dan penting dalam pembangunan API, sains data, dan penciptaan perpustakaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa
