


Percepatkan Penggantian Regex dengan Regex Dioptimumkan Berasaskan Trie
Masalah
Melaksanakan berbilang penggantian regex pada sebilangan besar ayat boleh memakan masa, terutamanya apabila menggunakan sempadan perkataan kekangan. Ini boleh menyebabkan kelewatan pemprosesan, terutamanya apabila berurusan dengan berjuta-juta penggantian.
Penyelesaian Cadangan
Menggunakan regex dioptimumkan berasaskan Trie boleh mempercepatkan proses penggantian dengan ketara. Walaupun pendekatan kesatuan regex yang mudah menjadi tidak cekap dengan banyak perkataan yang dilarang, Trie mengekalkan struktur yang lebih cekap untuk pemadanan.
Kelebihan Trie-Optimized Regex
- Pencarian Lebih Pantas: Dengan membina struktur data Trie daripada perkataan yang dilarang, corak regex yang terhasil membolehkan enjin regex menentukan dengan pantas sama ada aksara sepadan dengan perkataan yang dilarang, menghapuskan perbandingan yang tidak perlu.
- Prestasi yang Dipertingkat: Untuk set data yang serupa dengan poster asal, regex yang dioptimumkan ini ialah kira-kira 1000 kali lebih cepat daripada yang diterima jawapan.
Pelaksanaan Kod
Menggunakan pendekatan berasaskan trie melibatkan langkah berikut:
- Buat struktur data Trie dengan memasukkan semua perkataan yang dilarang.
- Tukar Trie kepada corak regex menggunakan fungsi yang merentasi struktur Trie.
- Kompilkan corak regex dan lakukan penggantian pada ayat sasaran.
Kod Contoh
import re import trie # Create Trie and add ban words trie = trie.Trie() for word in banned_words: trie.add(word) # Convert Trie to regex pattern regex_pattern = trie.pattern() # Compile regex and perform replacements regex_compiled = re.compile(r"\b" + regex_pattern + r"\b")
Pertimbangan Tambahan
- Untuk maksimum prestasi, prakompil regex yang dioptimumkan sebelum menggelung melalui ayat.
- Untuk pelaksanaan yang lebih pantas, pertimbangkan untuk menggunakan bahasa yang menawarkan sokongan asli untuk struktur Trie, seperti modul trie Python atau java.util.TreeMap Java.
Atas ialah kandungan terperinci Bagaimanakah Regex Berasaskan Trie Boleh Mengoptimumkan Kelajuan untuk Penggantian Berbilang dalam Set Data Teks Besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Memilih Python atau C bergantung kepada keperluan projek: 1) Jika anda memerlukan pembangunan pesat, pemprosesan data dan reka bentuk prototaip, pilih Python; 2) Jika anda memerlukan prestasi tinggi, latensi rendah dan kawalan perkakasan yang rapat, pilih C.

Dengan melabur 2 jam pembelajaran python setiap hari, anda dapat meningkatkan kemahiran pengaturcaraan anda dengan berkesan. 1. Ketahui Pengetahuan Baru: Baca dokumen atau tutorial menonton. 2. Amalan: Tulis kod dan latihan lengkap. 3. Kajian: Menyatukan kandungan yang telah anda pelajari. 4. Amalan Projek: Sapukan apa yang telah anda pelajari dalam projek sebenar. Pelan pembelajaran berstruktur seperti ini dapat membantu anda menguasai Python secara sistematik dan mencapai matlamat kerjaya.

Kaedah untuk belajar python dengan cekap dalam masa dua jam termasuk: 1. Semak pengetahuan asas dan pastikan anda sudah biasa dengan pemasangan Python dan sintaks asas; 2. Memahami konsep teras python, seperti pembolehubah, senarai, fungsi, dan lain -lain; 3. Menguasai penggunaan asas dan lanjutan dengan menggunakan contoh; 4. Belajar kesilapan biasa dan teknik debugging; 5. Memohon pengoptimuman prestasi dan amalan terbaik, seperti menggunakan komprehensif senarai dan mengikuti panduan gaya PEP8.

Python sesuai untuk pemula dan sains data, dan C sesuai untuk pengaturcaraan sistem dan pembangunan permainan. 1. Python adalah mudah dan mudah digunakan, sesuai untuk sains data dan pembangunan web. 2.C menyediakan prestasi dan kawalan yang tinggi, sesuai untuk pembangunan permainan dan pengaturcaraan sistem. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Python lebih sesuai untuk sains data dan perkembangan pesat, manakala C lebih sesuai untuk prestasi tinggi dan pengaturcaraan sistem. 1. Sintaks Python adalah ringkas dan mudah dipelajari, sesuai untuk pemprosesan data dan pengkomputeran saintifik. 2.C mempunyai sintaks kompleks tetapi prestasi yang sangat baik dan sering digunakan dalam pembangunan permainan dan pengaturcaraan sistem.

Adalah mungkin untuk melabur dua jam sehari untuk belajar Python. 1. Belajar Pengetahuan Baru: Ketahui konsep baru dalam satu jam, seperti senarai dan kamus. 2. Amalan dan Amalan: Gunakan satu jam untuk melakukan latihan pengaturcaraan, seperti menulis program kecil. Melalui perancangan dan ketekunan yang munasabah, anda boleh menguasai konsep teras Python dalam masa yang singkat.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular