cari
Rumahpembangunan bahagian belakangC++Bagaimanakah OpenCV dan SVM Boleh Digunakan untuk Pengelasan Imej yang Cekap?

How Can OpenCV and SVM be Used for Efficient Image Classification?

Menggunakan OpenCV dan SVM untuk Mengklasifikasikan Imej

Untuk menggunakan OpenCV dan SVM untuk pengelasan imej, satu siri langkah mesti diambil. Pertama, matriks latihan yang terdiri daripada ciri yang diekstrak daripada setiap imej mesti dibina. Matriks ini dibentuk dengan setiap baris mewakili imej, manakala setiap lajur sepadan dengan ciri imej tersebut. Memandangkan imej adalah dua dimensi, adalah perlu untuk menukarnya menjadi matriks satu dimensi. Panjang setiap baris akan sama dengan luas imej, yang mesti konsisten merentas semua imej.

Sebagai contoh, jika lima imej 4x3 piksel digunakan untuk latihan, matriks latihan dengan 5 baris (satu untuk setiap imej) dan 12 lajur (3x4 = 12) diperlukan. Semasa "mengisi" setiap baris dengan data daripada imej yang sepadan, pemetaan digunakan untuk menetapkan setiap elemen matriks imej 2D ke lokasi khususnya dalam baris matriks latihan yang sepadan.

Serentak, label mesti diwujudkan untuk setiap imej latihan. Ini dilakukan menggunakan matriks satu dimensi di mana setiap elemen sepadan dengan baris dalam matriks latihan dua dimensi. Nilai boleh ditetapkan untuk mewakili kelas yang berbeza (cth., -1 untuk bukan mata dan 1 untuk mata). Nilai ini boleh ditetapkan dalam gelung yang digunakan untuk menilai setiap imej, dengan mengambil kira struktur direktori data latihan.

Selepas mencipta matriks dan label latihan, adalah perlu untuk mengkonfigurasi parameter SVM. Objek CvSVMParams diisytiharkan dan nilai khusus ditetapkan, seperti svm_type dan kernel_type. Parameter ini boleh diubah berdasarkan keperluan projek, seperti yang dicadangkan dalam Pengenalan OpenCV untuk Menyokong Mesin Vektor.

Dengan parameter yang dikonfigurasikan, objek CvSVM dicipta dan dilatih pada data yang disediakan. Bergantung pada saiz set data, proses ini boleh memakan masa. Walau bagaimanapun, sebaik sahaja latihan selesai, SVM terlatih boleh disimpan untuk kegunaan masa hadapan, mengelakkan keperluan untuk latihan semula setiap kali.

Untuk menilai imej menggunakan SVM terlatih, imej dibaca, diubah menjadi satu dimensi matriks, dan diserahkan kepada svm.predict(). Fungsi ini mengembalikan nilai berdasarkan label yang diberikan semasa latihan. Sebagai alternatif, berbilang imej boleh dinilai secara serentak dengan mencipta matriks dalam format yang sama seperti matriks latihan yang ditakrifkan sebelum ini dan menghantarnya sebagai hujah. Dalam kes sedemikian, nilai pulangan yang berbeza akan dihasilkan oleh svm.predict().

Atas ialah kandungan terperinci Bagaimanakah OpenCV dan SVM Boleh Digunakan untuk Pengelasan Imej yang Cekap?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimana Perpustakaan Templat St Standard (STL) berfungsi?Bagaimana Perpustakaan Templat St Standard (STL) berfungsi?Mar 12, 2025 pm 04:50 PM

Artikel ini menerangkan Perpustakaan Templat St Standard (STL), yang memberi tumpuan kepada komponen terasnya: bekas, iterator, algoritma, dan functors. Ia memperincikan bagaimana ini berinteraksi untuk membolehkan pengaturcaraan generik, meningkatkan kecekapan kod dan kebolehbacaan t

Bagaimanakah saya menggunakan algoritma dari STL (jenis, mencari, mengubah, dll) dengan cekap?Bagaimanakah saya menggunakan algoritma dari STL (jenis, mencari, mengubah, dll) dengan cekap?Mar 12, 2025 pm 04:52 PM

Artikel ini memperincikan penggunaan algoritma STL yang cekap dalam c. Ia menekankan pilihan struktur data (vektor vs senarai), analisis kerumitan algoritma (mis., Std :: Sort vs Std :: partial_sort), penggunaan iterator, dan pelaksanaan selari. Perangkap biasa seperti

Bagaimana saya mengendalikan pengecualian dengan berkesan di C?Bagaimana saya mengendalikan pengecualian dengan berkesan di C?Mar 12, 2025 pm 04:56 PM

Artikel ini butiran pengendalian pengecualian yang berkesan di C, meliputi percubaan, menangkap, dan membuang mekanik. Ia menekankan amalan terbaik seperti RAII, mengelakkan blok tangkapan yang tidak perlu, dan pengecualian pembalakan untuk kod yang mantap. Artikel ini juga menangani perf

Bagaimanakah saya menggunakan semantik bergerak di C untuk meningkatkan prestasi?Bagaimanakah saya menggunakan semantik bergerak di C untuk meningkatkan prestasi?Mar 18, 2025 pm 03:27 PM

Artikel ini membincangkan menggunakan semantik Move dalam C untuk meningkatkan prestasi dengan mengelakkan penyalinan yang tidak perlu. Ia meliputi pelaksanaan pembina bergerak dan pengendali tugasan, menggunakan STD :: bergerak, dan mengenal pasti senario utama dan perangkap untuk Appl yang berkesan

Bagaimanakah saya menggunakan julat dalam C 20 untuk manipulasi data yang lebih ekspresif?Bagaimanakah saya menggunakan julat dalam C 20 untuk manipulasi data yang lebih ekspresif?Mar 17, 2025 pm 12:58 PM

C 20 julat meningkatkan manipulasi data dengan ekspresi, komposiliti, dan kecekapan. Mereka memudahkan transformasi kompleks dan mengintegrasikan ke dalam kod sedia ada untuk prestasi dan kebolehkerjaan yang lebih baik.

Bagaimanakah penghantaran dinamik berfungsi di C dan bagaimana ia mempengaruhi prestasi?Bagaimanakah penghantaran dinamik berfungsi di C dan bagaimana ia mempengaruhi prestasi?Mar 17, 2025 pm 01:08 PM

Artikel ini membincangkan penghantaran dinamik dalam C, kos prestasinya, dan strategi pengoptimuman. Ia menyoroti senario di mana penghantaran dinamik memberi kesan kepada prestasi dan membandingkannya dengan penghantaran statik, menekankan perdagangan antara prestasi dan

Bagaimanakah saya menggunakan rujukan RValue dengan berkesan di C?Bagaimanakah saya menggunakan rujukan RValue dengan berkesan di C?Mar 18, 2025 pm 03:29 PM

Artikel membincangkan penggunaan rujukan RValue yang berkesan dalam C untuk bergerak semantik, pemajuan sempurna, dan pengurusan sumber, menonjolkan amalan terbaik dan penambahbaikan prestasi. (159 aksara)

Bagaimanakah pengurusan memori C berfungsi, termasuk petunjuk baru, memadam, dan pintar?Bagaimanakah pengurusan memori C berfungsi, termasuk petunjuk baru, memadam, dan pintar?Mar 17, 2025 pm 01:04 PM

Pengurusan memori C menggunakan petunjuk baru, memadam, dan pintar. Artikel ini membincangkan manual vs pengurusan automatik dan bagaimana penunjuk pintar menghalang kebocoran memori.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual