


Bagaimana untuk Mengoptimumkan Sempadan HSV untuk Pengesanan Warna Tepat dalam OpenCV?
Memilih Sempadan HSV Optimum untuk Pengesanan Warna Menggunakan cv::inRange (OpenCV)
Dalam pemprosesan imej, ruang warna HSV sering digunakan untuk pengesanan warna. Memilih sempadan atas dan bawah HSV yang sesuai adalah penting untuk mengenal pasti warna sasaran dengan tepat. Soalan ini meneroka proses pemilihan untuk imej yang mengandungi penutup oren pada tin kopi.
Walaupun memberikan anggaran nilai pusat HSV sebanyak (22, 59, 100) untuk penutup, percubaan awal menggunakan sempadan (18 , 40, 90) dan (27, 255, 255) membuahkan hasil yang tidak memuaskan. Untuk menangani perkara ini, kita mesti mempertimbangkan isu yang berpotensi dalam skala HSV dan format imej.
Masalah 1: Varian Skala HSV
Aplikasi yang berbeza mungkin menggunakan skala HSV yang berbeza. GIMP menggunakan H = 0-360, S = 0-100, V = 0-100, manakala OpenCV menggunakan H: 0-179, S: 0-255, V: 0-255. Dalam kes ini, nilai rona GIMP (22) hendaklah dibelah dua untuk memadankan skala OpenCV, menghasilkan julat (5, 50, 50) - (15, 255, 255).
Masalah 2: Penukaran Format Imej
OpenCV beroperasi pada imej dalam format BGR, bukan RGB. Oleh itu, adalah perlu untuk mengubah suai garis penukaran warna kepada cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV). Ini memastikan bahawa imej ditukar dengan betul sebelum pengesanan sempadan HSV.
Dengan menggabungkan pelarasan ini, kami memperoleh hasil yang lebih menjanjikan:
[Imej pengesanan yang dipertingkatkan]
Walaupun output tidak sempurna, ia memberikan pengesanan yang lebih baik pada tudung oren. Pengesanan palsu boleh diminimumkan dengan memilih kontur terbesar yang sepadan dengan tudung.
Kesimpulan
Memilih sempadan HSV yang sesuai melibatkan pertimbangan varians skala dan penukaran format imej yang betul. Dengan menangani isu ini, kami boleh meningkatkan ketepatan pengesanan warna menggunakan cv::inRange dalam OpenCV.
Atas ialah kandungan terperinci Bagaimana untuk Mengoptimumkan Sempadan HSV untuk Pengesanan Warna Tepat dalam OpenCV?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Sintaks asas untuk pengirim senarai python adalah senarai [Mula: Berhenti: Langkah]. 1. Start adalah indeks elemen pertama yang disertakan, 2.Stop adalah indeks elemen pertama yang dikecualikan, dan 3. Step menentukan saiz langkah antara elemen. Hirisan tidak hanya digunakan untuk mengekstrak data, tetapi juga untuk mengubah suai dan membalikkan senarai.

ListsOutPerFormAraySin: 1) DynamicsizingandFrequentInsertions/Deletions, 2) StoringHeterogeneousData, dan3) MemoryeficiencyForSparsedata, ButmayHaveslightPerformancecostSincertaor.

ToConvertapythonarraytoalist, usethelist () constructororageneratorexpression.1) importTheArrayModuleAndCreateeanArray.2) uselist (arr) atau [xforxinarr] toConvertittoalist, urusanPengerasiPormanceAndMemoryeficiencyForlargedatasets.

ChoosearraysoverListSinpythonforbetterperformanceandMemoryeficiencySpecificscenarios.1) largenumericaldatasets: arraysreducememoryusage.2) Prestasi-CRITICALICALLY:

Di Python, anda boleh menggunakan gelung, menghitung dan menyenaraikan pemantauan ke senarai melintasi; Di Java, anda boleh menggunakan tradisional untuk gelung dan dipertingkatkan untuk gelung untuk melintasi tatasusunan. 1. Kaedah Traversal Senarai Python termasuk: untuk gelung, penghitungan dan pemahaman senarai. 2. Java Array Traversal Kaedah termasuk: tradisional untuk gelung dan dipertingkatkan untuk gelung.

Artikel ini membincangkan pernyataan baru "Match" Python yang diperkenalkan dalam versi 3.10, yang berfungsi sebagai setara dengan menukar pernyataan dalam bahasa lain. Ia meningkatkan kebolehbacaan kod dan menawarkan manfaat prestasi ke atas tradisional if-elif-el

Kumpulan Pengecualian dalam Python 3.11 Membenarkan mengendalikan pelbagai pengecualian secara serentak, meningkatkan pengurusan ralat dalam senario serentak dan operasi kompleks.

Fungsi anotasi dalam python Tambah metadata ke fungsi untuk pemeriksaan jenis, dokumentasi, dan sokongan IDE. Mereka meningkatkan kebolehbacaan kod, penyelenggaraan, dan penting dalam pembangunan API, sains data, dan penciptaan perpustakaan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Dreamweaver CS6
Alat pembangunan web visual

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.
