


Dapatkan N Baris Terakhir Fail, Mensimulasikan 'Ekor'
Pengenalan:
Apabila menganalisis fail log yang besar, selalunya perlu mendapatkan semula N baris terakhir untuk penomboran atau pemeriksaan. Ini menimbulkan persoalan tentang cara mengekori fail log dengan offset dengan cekap.
Penyelesaian Calon 1:
def tail(f, n, offset=0): avg_line_length = 74 to_read = n + offset while 1: try: f.seek(-(avg_line_length * to_read), 2) except IOError: f.seek(0) pos = f.tell() lines = f.read().splitlines() if len(lines) >= to_read or pos == 0: return lines[-to_read:offset and -offset or None] avg_line_length *= 1.3
Penilaian:
Ini pendekatan membuat andaian tentang purata panjang garisan dan secara berperingkat mencari ke belakang sehingga ia menemui garisan yang mencukupi. Disebabkan anggaran awal, ia mungkin perlu mencari beberapa kali, yang mungkin akan dikenakan penalti prestasi.
Penyelesaian Calon 2:
def tail(f, lines=20): BLOCK_SIZE = 1024 f.seek(0, 2) block_end_byte = f.tell() lines_to_go = lines block_number = -1 blocks = [] while lines_to_go > 0 and block_end_byte > 0: if (block_end_byte - BLOCK_SIZE > 0): f.seek(block_number * BLOCK_SIZE, 2) blocks.append(f.read(BLOCK_SIZE)) else: f.seek(0, 0) blocks.append(f.read(block_end_byte)) lines_found = blocks[-1].count('\n') lines_to_go -= lines_found block_end_byte -= BLOCK_SIZE block_number -= 1 all_read_text = ''.join(reversed(blocks)) return '\n'.join(all_read_text.splitlines()[-lines:])
Penjelasan:
Kaedah ini berundur melalui blok fail demi blok sehingga ia menemui bilangan baris baharu yang dikehendaki. Ia tidak membuat andaian tentang panjang baris dan dibaca dari awal jika fail terlalu kecil untuk diundur.
Perbandingan:
Penyelesaian Calon 2 secara amnya lebih cekap dan mantap daripada Penyelesaian Calon 1 , kerana ia tidak bergantung pada anggaran dan membaca fail secara berurutan. Ini adalah pendekatan yang lebih dipercayai untuk mengekori fail log dengan offset.
Atas ialah kandungan terperinci Bagaimana untuk Mendapatkan Kembali N Baris Terakhir Fail Besar dengan Cekap?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Artikel ini membimbing pemaju Python mengenai bangunan baris baris komando (CLI). Butirannya menggunakan perpustakaan seperti Typer, Klik, dan ArgParse, menekankan pengendalian input/output, dan mempromosikan corak reka bentuk mesra pengguna untuk kebolehgunaan CLI yang lebih baik.

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Artikel ini membincangkan peranan persekitaran maya di Python, memberi tumpuan kepada menguruskan kebergantungan projek dan mengelakkan konflik. Ia memperincikan penciptaan, pengaktifan, dan faedah mereka dalam meningkatkan pengurusan projek dan mengurangkan isu pergantungan.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.