


Bagaimanakah Langkah dan Ciri Masa Mempengaruhi Prestasi Model LSTM dan Latihan Stateful?
Memahami Langkah dan Ciri Masa LSTM
Dalam model LSTM, langkah dan ciri masa merujuk kepada dimensi data input. Langkah masa mewakili bilangan titik data dalam jujukan, manakala ciri mewakili pembolehubah atau dimensi yang berbeza dalam setiap titik data.
Dalam contoh anda, data input dibentuk semula menjadi tatasusunan 3D dengan dimensi berikut:
- Sampel (saiz kelompok)
- Langkah masa (panjang jujukan, dalam kes ini 3)
- Ciri (bilangan pembolehubah input, dalam kes ini 1)
Oleh itu, setiap sampel ialah urutan 3 titik data, dengan setiap titik data terdiri daripada satu input berubah-ubah.
Stateful LSTM
Stateful LSTM mengekalkan keadaan tersembunyi yang dikemas kini pada setiap langkah masa. Ini membolehkan model belajar daripada input lepas dan membuat ramalan berdasarkan konteks. Apabila stateful=True, LSTM akan mengingati keadaan tersembunyi antara kelompok, yang boleh berguna untuk data berjujukan.
Dalam kod anda, anda menggunakan saiz kelompok 1 dan melatih model selama 100 zaman. Walau bagaimanapun, anda juga menetapkan semula keadaan selepas setiap zaman dengan model.reset_states(). Ini bermakna model itu sebenarnya tidak belajar daripada input lepas antara kelompok, dan pada asasnya ia menganggap setiap kelompok sebagai urutan baharu.
Untuk melatih LSTM berstatus dengan betul, anda harus mengelak daripada menetapkan semula keadaan semasa latihan. Sebaliknya, anda hanya perlu menetapkan semula keadaan apabila anda ingin memulakan jujukan baharu atau membuat ramalan pada titik data baharu.
Rajah Terbuka
Rajah yang anda berikan menggambarkan seni bina rangkaian LSTM yang dibuka. Dalam kedua-dua kes, kotak merah mewakili langkah input, dan kotak hijau mewakili keadaan tersembunyi.
Edit 1:
Rajah berikut sepadan dengan gambar rajah pertama yang dibuka. anda sediakan:
[Imej gambarajah yang dibongkar dengan satu langkah input setiap langkah masa]
Rajah yang anda berikan sepadan dengan gambar rajah terbongkar kedua:
[Imej gambar rajah yang dibuka dengan semua langkah input serentak]
Edit 2:
Memahami masa langkah dan hujah ciri adalah penting untuk model LSTM. Rujuk sumber yang disediakan dalam siaran asal dan ulasan untuk penjelasan lanjut.
Nota Tambahan:
- Lapisan LSTM boleh memproses data dalam pelbagai bentuk, termasuk satu konfigurasi -kepada-banyak, banyak-ke-satu dan banyak-ke-banyak.
- Anda boleh mencapai konfigurasi yang berbeza dengan melaraskan hujah return_sequences.
- Siaran asal juga mengandungi maklumat berharga tentang menggunakan LSTM stateful untuk tugasan ramalan langkah masa hadapan.
Atas ialah kandungan terperinci Bagaimanakah Langkah dan Ciri Masa Mempengaruhi Prestasi Model LSTM dan Latihan Stateful?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

Dreamweaver CS6
Alat pembangunan web visual