cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimanakah Pemahaman Penjana Meningkatkan Kecekapan Berbanding dengan Pemahaman Senarai?

How Do Generator Comprehensions Improve Efficiency Compared to List Comprehensions?

Cara Pemahaman Penjana Meningkatkan Kecekapan

Pemahaman penjana ialah ciri berkuasa dalam pengaturcaraan yang memanfaatkan prinsip pemahaman senarai tetapi menawarkan kelebihan tersendiri. Ia membolehkan anda menjana nilai dengan malas, menghasilkannya satu demi satu dan bukannya membina senarai lengkap.

Memahami Pemahaman Penjana

Sama seperti pemahaman senarai, pemahaman penjana menggunakan sintaks yang sama. Walau bagaimanapun, bukannya menghasilkan senarai, mereka mencipta objek penjana. Penjana ialah lelaran yang menjana nilai dengan segera, menghapuskan keperluan untuk menyimpan keseluruhan jujukan dalam ingatan.

Faedah Utama Pemahaman Penjana

Pemahaman penjana cemerlang dalam situasi di mana pemuliharaan ingatan adalah penting. Tidak seperti pemahaman senarai, yang memperuntukkan memori untuk keseluruhan jujukan, penjana menghasilkan nilai satu demi satu, meminimumkan penggunaan memori.

Contoh Praktikal

Pertimbangkan blok kod berikut yang menggunakan pemahaman senarai untuk menapis senarai nombor:

my_list = [1, 3, 5, 9, 2, 6]
filtered_list = [item for item in my_list if item > 3]

Jika kita menukar ini kepada penjana pemahaman, kami mencapai hasil yang sama dengan kurang memori overhed:

filtered_gen = (item for item in my_list if item > 3)

Mengakses Nilai Penjana

Untuk mendapatkan semula nilai daripada penjana, anda boleh menggunakan seterusnya( ) fungsi. Walau bagaimanapun, adalah penting untuk ambil perhatian bahawa apabila semua nilai telah dihasilkan, percubaan untuk mengekstrak lebih banyak item daripada penjana akan menimbulkan ralat StopIteration.

Generator vs. List Comprehension

Pilihan antara menggunakan pemahaman penjana berbanding pemahaman senarai bergantung pada keperluan khusus anda. Jika anda perlu memproses item secara individu, meminimumkan penggunaan memori, maka pemahaman penjana adalah ideal. Sebaliknya, jika anda memerlukan akses kepada berbilang nilai secara serentak atau ingin menyimpan urutan lengkap sebelum pemprosesan, pemahaman senarai akan menjadi pilihan yang lebih sesuai.

Atas ialah kandungan terperinci Bagaimanakah Pemahaman Penjana Meningkatkan Kecekapan Berbanding dengan Pemahaman Senarai?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python: Permainan, GUI, dan banyak lagiPython: Permainan, GUI, dan banyak lagiApr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Python vs C: Aplikasi dan kes penggunaan dibandingkanPython vs C: Aplikasi dan kes penggunaan dibandingkanApr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Rancangan Python 2 jam: Pendekatan yang realistikRancangan Python 2 jam: Pendekatan yang realistikApr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: meneroka aplikasi utamanyaPython: meneroka aplikasi utamanyaApr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Berapa banyak python yang boleh anda pelajari dalam 2 jam?Berapa banyak python yang boleh anda pelajari dalam 2 jam?Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam?Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah?Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Apa yang perlu saya lakukan jika modul '__builtin__' tidak dijumpai apabila memuatkan fail acar di Python 3.6?Apa yang perlu saya lakukan jika modul '__builtin__' tidak dijumpai apabila memuatkan fail acar di Python 3.6?Apr 02, 2025 am 07:12 AM

Memuatkan Fail Pickle di Python 3.6 Kesalahan Laporan Alam Sekitar: ModulenotFoundError: Nomodulenamed ...

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

mPDF

mPDF

mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),