


Membaca Fail CSV Raksasa: Mengoptimumkan Memori dan Kelajuan
Apabila cuba memproses fail CSV besar-besaran dengan berjuta-juta baris dan beratus-ratus lajur, tradisional pendekatan menggunakan iterator boleh membawa kepada isu berkaitan memori. Artikel ini meneroka teknik yang dioptimumkan untuk mengendalikan data CSV berskala besar dalam Python 2.7.
Pengoptimuman Memori:
Inti masalah memori terletak pada membina senarai dalam memori untuk menyimpan set data yang besar. Untuk mengurangkan isu ini, Python menawarkan kata kunci hasil, yang menukar fungsi kepada fungsi penjana. Fungsi ini menjeda pelaksanaan selepas setiap penyataan hasil, membenarkan pemprosesan tambahan data seperti yang dihadapi.
Dengan menggunakan fungsi penjana, anda boleh memproses data baris demi baris, menghapuskan keperluan untuk menyimpan keseluruhan fail dalam memori. Kod berikut menunjukkan pendekatan ini:
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
Peningkatan Kelajuan:
Selain itu, anda boleh memanfaatkan fungsi dropwhile dan takewhile Python untuk meningkatkan lagi kelajuan pemprosesan. Fungsi ini boleh menapis data dengan cekap, membolehkan anda mencari dengan cepat baris yang diminati. Begini caranya:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
Pemprosesan Bergelung Dipermudah:
Dengan menggabungkan fungsi penjana, anda boleh memudahkan proses penggulungan melalui set data anda. Berikut ialah kod yang dioptimumkan untuk getstuff dan getdata:
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
Kini, anda boleh lelaran terus ke atas penjana getdata, yang menghasilkan aliran baris baris demi baris, membebaskan sumber memori yang berharga.
Ingat, matlamatnya adalah untuk meminimumkan storan data dalam memori sambil memaksimumkan kecekapan pemprosesan pada masa yang sama. Dengan menggunakan teknik pengoptimuman ini, anda boleh mengendalikan fail CSV raksasa dengan berkesan tanpa menghadapi sekatan jalan memori.
Atas ialah kandungan terperinci Bagaimanakah saya boleh memproses fail CSV raksasa dalam Python 2.7 dengan cekap tanpa menghadapi masalah ingatan?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i

Forloopsareadvantageousforknowniterationsationship, menawarkanMenghentianmentability, whileopsareidealfordynamicconditionsandunknowniterations, providingcontrolovertermination.1) forloopsareperfectfectfectfectfectfectfectoVeratingOverlists, tuples, orstrings, secara langsung

Pythonusesahybridmodelofcompilationandinterpretation: 1) thepythoninterpretercompilessourcodcecodeintoplatform-independentbytecode.2) thepythonvirtualmachine (PVM) thenexecutesthisbytecode, BalantingeaseOfusoWithperformance.

Pythonisbothinterpretedandandcompiled.1) it'scompiledtobytecodeforporabilityAcrossplatforms.2) theBytecodeistheninterpreted, membolehkanfordynamictypingandrapiddevelopment, walaupunItmayBeslowerLowerWanLelyCiledlanguages.

ForloopsareidealwhenyonesshenumberofiterationsationseSinadvance, whilewhileloopsarebetterforsituationshipheryouneedtoloopuntilaconditionismet.forloopsaremoreeficientablyandable, yang sesuai, manakala whileloopsoffermorecontrolandareusefereficeficeficeficeficient,

Forloopsareusedwhenthenumberofiterationsisknowninadvance, whilewhileloopsareusedwhenTheiterationsdependonacondition.1) forloopsareidealforiteratingoversequencesLikeListsorArrays.2)


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Dreamweaver CS6
Alat pembangunan web visual

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.
