


Bagaimanakah saya boleh Mencipta Matriks Sangat Besar dalam Python Tanpa Kehabisan Memori?
Mencipta Matriks Sangat Besar dalam Python dan NumPy
NumPy terkenal kerana keupayaannya mengendalikan matriks yang besar. Walau bagaimanapun, mencipta matriks yang melebihi dimensi tertentu, seperti 50000 x 50000, boleh menghadapi had ingatan. Ini menimbulkan persoalan: adakah mungkin untuk mencipta matriks besar (cth., 1 juta x 1 juta) dalam NumPy tanpa menggunakan RAM yang berlebihan?
Jawapannya terletak pada memanfaatkan PyTables dan NumPy bersama-sama. PyTables beroperasi dengan menyimpan data dalam format HDF pada cakera, memberikan fleksibiliti untuk memilih pilihan pemampatan. Ini boleh mengurangkan keperluan memori dengan ketara, selalunya dengan faktor yang mengagumkan sebanyak 10x. Selain itu, PyTables mempunyai prestasi yang mengagumkan, membolehkan pemprosesan data yang cekap, walaupun pada perkakasan sederhana.
Untuk mengakses data sebagai recarray NumPy, hanya gunakan sintaks berikut:
data = table[row_from:row_to]
Pustaka HDF mengendalikan pemuatan dan penukaran data kepada NumPy, memberikan pengalaman yang lancar untuk pembangun. Pendekatan ini membolehkan penciptaan dan manipulasi matriks yang sangat besar tanpa memori sistem yang memberangsangkan.
Atas ialah kandungan terperinci Bagaimanakah saya boleh Mencipta Matriks Sangat Besar dalam Python Tanpa Kehabisan Memori?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Memilih Python atau C bergantung kepada keperluan projek: 1) Jika anda memerlukan pembangunan pesat, pemprosesan data dan reka bentuk prototaip, pilih Python; 2) Jika anda memerlukan prestasi tinggi, latensi rendah dan kawalan perkakasan yang rapat, pilih C.

Dengan melabur 2 jam pembelajaran python setiap hari, anda dapat meningkatkan kemahiran pengaturcaraan anda dengan berkesan. 1. Ketahui Pengetahuan Baru: Baca dokumen atau tutorial menonton. 2. Amalan: Tulis kod dan latihan lengkap. 3. Kajian: Menyatukan kandungan yang telah anda pelajari. 4. Amalan Projek: Sapukan apa yang telah anda pelajari dalam projek sebenar. Pelan pembelajaran berstruktur seperti ini dapat membantu anda menguasai Python secara sistematik dan mencapai matlamat kerjaya.

Kaedah untuk belajar python dengan cekap dalam masa dua jam termasuk: 1. Semak pengetahuan asas dan pastikan anda sudah biasa dengan pemasangan Python dan sintaks asas; 2. Memahami konsep teras python, seperti pembolehubah, senarai, fungsi, dan lain -lain; 3. Menguasai penggunaan asas dan lanjutan dengan menggunakan contoh; 4. Belajar kesilapan biasa dan teknik debugging; 5. Memohon pengoptimuman prestasi dan amalan terbaik, seperti menggunakan komprehensif senarai dan mengikuti panduan gaya PEP8.

Python sesuai untuk pemula dan sains data, dan C sesuai untuk pengaturcaraan sistem dan pembangunan permainan. 1. Python adalah mudah dan mudah digunakan, sesuai untuk sains data dan pembangunan web. 2.C menyediakan prestasi dan kawalan yang tinggi, sesuai untuk pembangunan permainan dan pengaturcaraan sistem. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Python lebih sesuai untuk sains data dan perkembangan pesat, manakala C lebih sesuai untuk prestasi tinggi dan pengaturcaraan sistem. 1. Sintaks Python adalah ringkas dan mudah dipelajari, sesuai untuk pemprosesan data dan pengkomputeran saintifik. 2.C mempunyai sintaks kompleks tetapi prestasi yang sangat baik dan sering digunakan dalam pembangunan permainan dan pengaturcaraan sistem.

Adalah mungkin untuk melabur dua jam sehari untuk belajar Python. 1. Belajar Pengetahuan Baru: Ketahui konsep baru dalam satu jam, seperti senarai dan kamus. 2. Amalan dan Amalan: Gunakan satu jam untuk melakukan latihan pengaturcaraan, seperti menulis program kecil. Melalui perancangan dan ketekunan yang munasabah, anda boleh menguasai konsep teras Python dalam masa yang singkat.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Dreamweaver Mac版
Alat pembangunan web visual

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa
