cari
Rumahpembangunan bahagian belakangTutorial PythonAdakah pengoptimuman penggabungan rentetan Python digunakan pada rentetan besar?

Does Python's string concatenation optimization apply to large strings?

Cara Menambah Satu Rentetan dengan Rentetan yang Lain dengan Cekap dalam Python

Dalam Python, menggabungkan rentetan dengan operator ' ' ialah tugas biasa. Walaupun kod berikut adalah mudah:

<code class="python">var1 = "foo"
var2 = "bar"
var3 = var1 + var2</code>

Ia menimbulkan persoalan tentang kecekapan, terutamanya untuk rentetan besar atau gabungan berulang.

Pelanjutan Rentetan Dalam Tempat

Nasib baik, CPython telah melaksanakan pengoptimuman untuk meningkatkan kecekapan penyambungan rentetan. Apabila hanya satu rujukan kepada rentetan wujud dan rentetan lain dilampirkan padanya, CPython cuba memanjangkan rentetan asal di tempatnya. Pengoptimuman ini menjadikan operasi dilunaskan O(n).

Sebagai contoh, kod berikut pernah menjadi O(n^2):

<code class="python">s = ""
for i in range(n):
    s += str(i)</code>

Walau bagaimanapun, dengan pengoptimuman, ia kini berjalan dalam O(n).

Butiran Pelaksanaan Python

Berikut ialah petikan daripada kod sumber Python C yang menggambarkan pengoptimuman:

<code class="c">int
_PyBytes_Resize(PyObject **pv, Py_ssize_t newsize)
{
    /* ... */
    *pv = (PyObject *)
        PyObject_REALLOC((char *)v, PyBytesObject_SIZE + newsize);
    if (*pv == NULL) {
        PyObject_Del(v);
        PyErr_NoMemory();
        return -1;
    }
    _Py_NewReference(*pv);
    sv = (PyBytesObject *) *pv;
    Py_SIZE(sv) = newsize;
    sv->ob_sval[newsize] = '<pre class="brush:php;toolbar:false"><code class="python">import timeit

s = ""
for i in range(10):
    s += 'a'

# Time the concatenation of 10 'a' characters
t1 = timeit.timeit(stmt="""s = ""
for i in range(10):
    s += 'a'""", globals=globals(), number=1000000)

# Time the concatenation of 100 'a' characters
t2 = timeit.timeit(stmt="""s = ""
for i in range(100):
    s += 'a'""", globals=globals(), number=100000)

# Time the concatenation of 1000 'a' characters
t3 = timeit.timeit(stmt="""s = ""
for i in range(1000):
    s += 'a'""", globals=globals(), number=10000)

print("10 'a':", t1)
print("100 'a':", t2)
print("1000 'a':", t3)</code>
'; sv->ob_shash = -1; /* invalidate cached hash value */ return 0; }

Fungsi ini membenarkan saiz semula objek rentetan, tetapi hanya jika terdapat hanya satu rujukan kepadanya. Saiz rentetan ditukar sambil mengekalkan lokasi memori asal.

Awas

Adalah penting untuk ambil perhatian bahawa pengoptimuman ini bukan sebahagian daripada spesifikasi Python. Ia hanya dilaksanakan dalam penterjemah CPython. Pelaksanaan Python lain, seperti PyPy atau Jython, mungkin mempamerkan ciri prestasi yang berbeza.

Ujian Empirikal

Secara empirik, pengoptimuman terbukti dalam prestasi kod berikut:

Hasilnya menunjukkan peningkatan ketara dalam masa pelaksanaan apabila bilangan penggabungan bertambah, menunjukkan bahawa pengoptimuman tidak boleh digunakan untuk rentetan yang lebih besar.

Kesimpulan

Walaupun pengoptimuman sambungan rentetan di tempat Python secara mendadak meningkatkan kecekapan penggabungan rentetan dalam senario tertentu, adalah penting untuk memahami batasan pelaksanaan ini. Untuk rentetan besar atau apabila pertimbangan pengurusan ingatan adalah yang utama, kaedah alternatif manipulasi rentetan mungkin diperlukan untuk mencapai prestasi optimum.

Atas ialah kandungan terperinci Adakah pengoptimuman penggabungan rentetan Python digunakan pada rentetan besar?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimanakah pilihan antara senarai dan tatasusunan memberi kesan kepada prestasi keseluruhan aplikasi Python yang berurusan dengan dataset yang besar?Bagaimanakah pilihan antara senarai dan tatasusunan memberi kesan kepada prestasi keseluruhan aplikasi Python yang berurusan dengan dataset yang besar?May 03, 2025 am 12:11 AM

Forhandlinglargedatasetsinpython, usenumpyarraysforbetterperformance.1) numpyarraysarememory-efisien danfasterfornumumerical.2) mengelakkan yang tidak dapat dipertahankan.3)

Jelaskan bagaimana memori diperuntukkan untuk senarai berbanding tatasusunan dalam Python.Jelaskan bagaimana memori diperuntukkan untuk senarai berbanding tatasusunan dalam Python.May 03, 2025 am 12:10 AM

Inpython, listsusedynamicMemoryAllocationwithover-peruntukan, pemecahan yang tidak dapat dilaksanakan.1) listsallocatemoremoremorythanneedinitial, resizingwhennessary.2) numpyarraysallocateExactMemoreForelements, menawarkanpredictableSabeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeBeat.

Bagaimana anda menentukan jenis data elemen dalam array python?Bagaimana anda menentukan jenis data elemen dalam array python?May 03, 2025 am 12:06 AM

Inpython, YouCansspectHedatypeyFeleMeremodelerernspant.1) Usenpynernrump.1) usenpynerp.dloatp.ploatm64, formor preciscontrolatatypes.

Apa itu Numpy, dan mengapa penting untuk pengkomputeran berangka dalam Python?Apa itu Numpy, dan mengapa penting untuk pengkomputeran berangka dalam Python?May 03, 2025 am 12:03 AM

Numpyisessentialfornumericalcomputinginpythonduetoitsspeed, ingatanefisiensi, dancomprehensivemathematicalfunctions.1) it'sfastbeCauseitperformsoperatiation

Bincangkan konsep 'peruntukan memori bersebelahan' dan kepentingannya untuk tatasusunan.Bincangkan konsep 'peruntukan memori bersebelahan' dan kepentingannya untuk tatasusunan.May 03, 2025 am 12:01 AM

Contiguousmemoryallocationiscialforarraysbecauseitallowsficientandfastelementaccess.1) itenablesconstantTimeAccess, O (1), duetodirectaddresscalculation.2) itimproveScheFiCiencyBymultmulteLemiSphetfespercacheline.3)

Bagaimana anda memotong senarai python?Bagaimana anda memotong senarai python?May 02, 2025 am 12:14 AM

Slicingapythonlistisdoneusingthesyntaxlist [Mula: berhenti: langkah] .here'showitworks: 1) startistheindexofthefirstelementtoinclude.2) stopistheindexofthefirstelementToexclude.3)

Apakah beberapa operasi biasa yang boleh dilakukan pada array numpy?Apakah beberapa operasi biasa yang boleh dilakukan pada array numpy?May 02, 2025 am 12:09 AM

NumpyallowsforvariousoperationsonArrays: 1) BasicarithmeticLikeaddition, penolakan, pendaraban, danDivision; 2) Pengerjaan AdvancedSuchasmatrixmultiplication; 3) Element-WiseOperationswithoutExplicitLoops;

Bagaimana tatasusunan digunakan dalam analisis data dengan python?Bagaimana tatasusunan digunakan dalam analisis data dengan python?May 02, 2025 am 12:09 AM

Arraysinpython, terutamanya yang ada, adalah, penawaran yang ditawarkan.1) numpyarraysenableFandlingoflargedataSetsandClexPleperationsLikemovingAverages.2)

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa