Rumah > Artikel > pembangunan bahagian belakang > Pembelajaran Mesin dalam PHP: Bina Pengelas Berita Menggunakan Rubix ML
Pembelajaran mesin ada di mana-mana—mengesyorkan filem, menandai imej dan kini juga mengklasifikasikan artikel berita. Bayangkan jika anda boleh melakukannya dalam PHP! Dengan Rubix ML, anda boleh membawa kuasa pembelajaran mesin kepada PHP dengan cara yang mudah dan boleh diakses. Panduan ini akan membimbing anda membina pengelas berita mudah yang menyusun artikel ke dalam kategori seperti "Sukan" atau "Teknologi." Pada akhirnya, anda akan mempunyai pengelas berfungsi yang boleh meramalkan kategori untuk artikel baharu berdasarkan kandungannya.
Projek ini sesuai untuk pemula yang ingin menyelami pembelajaran mesin menggunakan PHP dan anda boleh mengikuti kod lengkap di GitHub.
Rubix ML ialah perpustakaan pembelajaran mesin untuk PHP yang membawa alatan dan algoritma ML ke dalam persekitaran mesra PHP. Sama ada anda sedang mengusahakan klasifikasi, regresi, pengelompokan atau pemprosesan bahasa semula jadi, Rubix ML telah membantu anda. Ia membolehkan anda memuatkan dan mempraproses data, melatih model dan menilai prestasi—semuanya dalam PHP.
Rubix ML menyokong pelbagai tugas pembelajaran mesin, seperti:
Mari kita mendalami cara anda boleh menggunakan Rubix ML untuk membina pengelas berita mudah dalam PHP!
Kami akan mulakan dengan menyediakan projek PHP baharu dengan Rubix ML dan mengkonfigurasi autoloading.
Buat direktori projek baharu dan navigasi ke dalamnya:
mkdir NewsClassifier cd NewsClassifier
Pastikan anda telah memasang Komposer, kemudian tambah Rubix ML pada projek anda dengan menjalankan:
composer require rubix/ml
Untuk automuat kelas daripada direktori src projek kami, buka atau cipta fail composer.json dan tambahkan konfigurasi berikut:
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
Ini memberitahu Komposer untuk memuatkan secara automatik mana-mana kelas dalam folder src di bawah ruang nama NewsClassifier.
Selepas menambah konfigurasi autoload, jalankan arahan berikut untuk menjana semula autoloader Komposer:
mkdir NewsClassifier cd NewsClassifier
Direktori projek anda sepatutnya kelihatan seperti ini:
composer require rubix/ml
Dalam src/, buat fail yang dipanggil Classification.php. Fail ini akan mengandungi kaedah untuk melatih model dan meramalkan kategori berita.
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
Kelas Pengelasan ini mengandungi kaedah untuk:
Buat skrip dipanggil train.php dalam src/ untuk melatih model.
composer dump-autoload
Jalankan skrip ini untuk melatih model:
NewsClassifier/ ├── src/ │ ├── Classification.php │ └── train.php ├── storage/ ├── vendor/ ├── composer.json └── composer.lock
Jika berjaya, anda akan melihat:
<?php namespace NewsClassifier; use Rubix\ML\Classifiers\KNearestNeighbors; use Rubix\ML\Datasets\Labeled; use Rubix\ML\Datasets\Unlabeled; use Rubix\ML\PersistentModel; use Rubix\ML\Pipeline; use Rubix\ML\Tokenizers\Word; use Rubix\ML\Transformers\TfIdfTransformer; use Rubix\ML\Transformers\WordCountVectorizer; use Rubix\ML\Persisters\Filesystem; class Classification { private $modelPath; public function __construct($modelPath) { $this->modelPath = $modelPath; } public function train() { // Sample data and corresponding labels $samples = [ ['The team played an amazing game of soccer'], ['The new programming language has been released'], ['The match between the two teams was incredible'], ['The new tech gadget has been launched'], ]; $labels = [ 'sports', 'technology', 'sports', 'technology', ]; // Create a labeled dataset $dataset = new Labeled($samples, $labels); // Set up the pipeline with a text transformer and K-Nearest Neighbors classifier $estimator = new Pipeline([ new WordCountVectorizer(10000, 1, 1, new Word()), new TfIdfTransformer(), ], new KNearestNeighbors(4)); // Train the model $estimator->train($dataset); // Save the model $this->saveModel($estimator); echo "Training completed and model saved.\n"; } private function saveModel($estimator) { $persister = new Filesystem($this->modelPath); $model = new PersistentModel($estimator, $persister); $model->save(); } public function predict(array $samples) { // Load the saved model $persister = new Filesystem($this->modelPath); $model = PersistentModel::load($persister); // Predict categories for new samples $dataset = new Unlabeled($samples); return $model->predict($dataset); } }
Buat skrip lain, predict.php, dalam src/ untuk mengklasifikasikan artikel baharu berdasarkan model terlatih.
<?php require __DIR__ . '/../vendor/autoload.php'; use NewsClassifier\Classification; // Define the model path $modelPath = __DIR__ . '/../storage/model.rbx'; // Initialize the Classification object $classifier = new Classification($modelPath); // Train the model and save it $classifier->train();
Jalankan skrip ramalan untuk mengklasifikasikan sampel:
php src/train.php
Output hendaklah menunjukkan setiap teks sampel dengan kategori ramalannya.
Dengan panduan ini, anda telah berjaya membina pengelas berita mudah dalam PHP menggunakan Rubix ML! Ini menunjukkan bagaimana PHP boleh menjadi lebih serba boleh daripada yang anda fikirkan, membawa masuk keupayaan pembelajaran mesin untuk tugas seperti klasifikasi teks, sistem pengesyoran dan banyak lagi. Kod penuh untuk projek ini tersedia di GitHub.
Percubaan dengan algoritma atau data yang berbeza untuk mengembangkan pengelas. Siapa tahu PHP boleh melakukan pembelajaran mesin? Sekarang anda melakukannya.
Selamat mengekod!
Atas ialah kandungan terperinci Pembelajaran Mesin dalam PHP: Bina Pengelas Berita Menggunakan Rubix ML. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!