cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimanakah Kami Boleh Mengekstrak Jadual daripada PDF Tanpa OCR?

How Can We Extract Tables from PDFs Without OCR?

Ekstraksi Jadual Bukan OCR daripada Dokumen PDF

Dokumen PDF selalunya mengandungi jadual, yang merupakan struktur data penting untuk banyak aplikasi. Walau bagaimanapun, mengekstrak jadual daripada PDF sebagai data berstruktur kekal sebagai satu cabaran, terutamanya apabila OCR bukan pilihan.

Keterbatasan Rendering PDF

Banyak percubaan untuk mengekstrak jadual bermula dengan menukar PDF kepada HTML. Walau bagaimanapun, pendekatan ini sering menghasilkan hasil yang tidak memuaskan, terutamanya dengan dokumen bukan bahasa Inggeris, disebabkan oleh isu fon dan pengecaman teks yang lemah. Sebagai alternatif, mengekstrak jadual berdasarkan koordinat x dan y tidak boleh dilaksanakan untuk dokumen dengan kedudukan jadual yang berbeza-beza.

Kerumitan Pengecaman Jadual Manusia

Kesukaran asas terletak pada fakta bahawa PDF tidak mentakrifkan struktur jadual secara eksplisit. Sebaliknya, mereka membuat teks dan baris yang ditafsirkan manusia sebagai jadual. Untuk meniru tafsiran ini dalam kod ialah tugas yang sukar.

Teks Tidak Boleh Diekstrak

Dalam contoh khusus yang disediakan, isu tambahan timbul: dokumen mengandungi data teks yang rosak , menjadikan pengekstrakan teks langsung mustahil. Menyalin dan menampal teks daripada Adobe Reader tidak menghasilkan hasil yang bermakna, menghalang kebolehlaksanaan kaedah pengekstrakan berasaskan teks.

Kesimpulan

Manakala pengekstrakan teks ringkas daripada PDF adalah pengekstrakan jadual yang agak mudah dan boleh dipercayai kerana data berstruktur kekal sebagai cabaran, terutamanya apabila OCR bukan pilihan. Pengehadan pemaparan PDF, kerumitan pengecaman jadual manusia dan kemungkinan isu rasuah teks memberikan halangan yang ketara kepada pengekstrakan jadual automatik. Akibatnya, penyelesaian tersuai yang disesuaikan dengan struktur dan format dokumen tertentu selalunya diperlukan untuk mengekstrak jadual daripada PDF dengan berkesan.

Atas ialah kandungan terperinci Bagaimanakah Kami Boleh Mengekstrak Jadual daripada PDF Tanpa OCR?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python vs C: Pengurusan dan Kawalan MemoriPython vs C: Pengurusan dan Kawalan MemoriApr 19, 2025 am 12:17 AM

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Python untuk pengkomputeran saintifik: rupa terperinciPython untuk pengkomputeran saintifik: rupa terperinciApr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python dan C: Mencari alat yang betulPython dan C: Mencari alat yang betulApr 19, 2025 am 12:04 AM

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python untuk sains data dan pembelajaran mesinPython untuk sains data dan pembelajaran mesinApr 19, 2025 am 12:02 AM

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)