Rumah > Artikel > hujung hadapan web > Notasi Big O: Panduan Mudah
Big O Notation ialah konsep matematik yang digunakan untuk menerangkan prestasi atau kerumitan algoritma dari segi masa dan ruang apabila saiz input bertambah. Ia membantu kami memahami cara masa jalan algoritma meningkat dengan input yang lebih besar, membolehkan perbandingan yang lebih piawai bagi algoritma berbeza.
Apabila membandingkan algoritma, bergantung semata-mata pada masa pelaksanaan boleh mengelirukan. Sebagai contoh, satu algoritma mungkin memproses set data besar-besaran dalam satu jam, manakala satu lagi mengambil masa empat jam. Walau bagaimanapun, masa pelaksanaan boleh berbeza-beza berdasarkan mesin dan proses berjalan lain. Sebaliknya, kami menggunakan Notasi Big O untuk memfokus pada bilangan operasi yang dilakukan, yang memberikan ukuran kecekapan yang lebih konsisten.
Mari kita terokai dua cara untuk mengira jumlah semua nombor dari 1 hingga n:
function addUpTo(n) { let total = 0; for (let i = 1; i <= n; i++) { total += i; } return total; }
function addUpTo(n) { return n * (n + 1) / 2; }
Dalam Pilihan 1, jika n ialah 100, gelung berjalan 100 kali. Sebaliknya, Pilihan 2 sentiasa melaksanakan bilangan operasi tetap (pendaraban, penambahan dan pembahagian). Oleh itu:
Walaupun Pilihan 2 melibatkan tiga operasi (pendaraban, penambahan, pembahagian), kami menumpukan pada aliran umum dalam analisis Big O. Oleh itu, daripada menyatakannya sebagai O(3n), kami memudahkannya menjadi O(n). Begitu juga, O(n 10) memudahkan kepada O(n), dan O(n^2 5n 8) memudahkan kepada O(n^2). Dalam Big O Notation, kami menganggap senario terburuk, di mana istilah tertib tertinggi mempunyai kesan yang paling besar pada prestasi.
Terdapat bentuk tatatanda lain di luar kerumitan lazim yang disenaraikan di atas, seperti kerumitan masa logaritma yang dinyatakan sebagai O(log n).
Notasi O Besar membolehkan kami memformalkan pertumbuhan masa jalan algoritma berdasarkan saiz input. Daripada memfokuskan pada kiraan operasi tertentu, kami mengkategorikan algoritma ke dalam kelas yang lebih luas termasuk:
Pertimbangkan fungsi berikut, yang mencetak semua pasangan nombor dari 0 hingga n:
function addUpTo(n) { let total = 0; for (let i = 1; i <= n; i++) { total += i; } return total; }
Dalam kes ini, fungsi mempunyai dua gelung bersarang, jadi apabila nnn meningkat, bilangan operasi meningkat secara kuadratik. Untuk n= 2, terdapat 4 operasi, dan untuk n=3, terdapat 9 operasi, membawa kepada O(n^2).
function addUpTo(n) { return n * (n + 1) / 2; }
Pada pandangan pertama, seseorang mungkin menganggap ini O(n^2) kerana ia mengandungi dua gelung. Walau bagaimanapun, kedua-dua gelung berjalan secara bebas dan skala secara linear dengan n. Oleh itu, kerumitan masa keseluruhan ialah O(n).
Menganalisis setiap aspek kerumitan kod boleh menjadi rumit, tetapi beberapa peraturan am boleh memudahkan perkara:
Walaupun kami telah memfokuskan pada kerumitan masa, anda juga boleh mengira kerumitan ruang (memori) menggunakan Big O. Sesetengah orang memasukkan saiz input dalam pengiraan mereka, tetapi selalunya lebih berguna untuk memfokuskan pada ruang yang diperlukan oleh algoritma sahaja sendiri.
Contoh
function printAllPairs(n) { for (var i = 0; i < n; i++) { for (var j = 0; j < n; j++) { console.log(i, j); } } }
Dalam fungsi ini, kerumitan ruang ialah O(1) kerana kami menggunakan jumlah ruang yang tetap (dua pembolehubah) tanpa mengira saiz input.
Untuk fungsi yang mencipta tatasusunan baharu:
function countUpAndDown(n) { console.log("Going up!"); for (var i = 0; i < n; i++) { console.log(i); } console.log("At the top!\nGoing down..."); for (var j = n - 1; j >= 0; j--) { console.log(j); } console.log("Back down. Bye!"); }
Di sini, kerumitan ruang ialah O(n) kerana kami memperuntukkan ruang untuk tatasusunan baharu yang berkembang dengan saiz tatasusunan input.
Big O Notation menyediakan rangka kerja untuk menganalisis kecekapan algoritma dengan cara yang bebas daripada perkakasan dan butiran pelaksanaan khusus. Memahami konsep ini adalah penting untuk membangunkan kod yang cekap, terutamanya apabila saiz data berkembang. Dengan memfokuskan pada cara skala prestasi, pembangun boleh membuat pilihan termaklum tentang algoritma yang hendak digunakan dalam aplikasi mereka.
Atas ialah kandungan terperinci Notasi Big O: Panduan Mudah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!