


Melaksanakan Jadual Cincang Dwi Arah yang Cekap
Jadual cincang atau struktur data kamus menawarkan pengindeksan dan pengambilan semula nilai yang cekap menggunakan kunci. Walau bagaimanapun, kadangkala adalah wajar untuk mengindeks mengikut nilai juga. Jadual cincang dua hala membenarkan pengindeksan berasaskan kunci dan berasaskan nilai.
Pelaksanaan Tersuai Menggunakan Kelas Dwi Arah
Pelaksanaan dict Python menyediakan pemetaan satu arah daripada kekunci kepada nilai. Untuk mencipta jadual cincang dua arah, kita boleh mencipta kelas kita sendiri yang mewarisi daripada kelas dict:
<code class="python">class bidict(dict): def __init__(self, *args, **kwargs): super(bidict, self).__init__(*args, **kwargs) self.inverse = {} for key, value in self.items(): self.inverse.setdefault(value, []).append(key) def __setitem__(self, key, value): if key in self: self.inverse[self[key]].remove(key) super(bidict, self).__setitem__(key, value) self.inverse.setdefault(value, []).append(key) def __delitem__(self, key): self.inverse.setdefault(self[key], []).remove(key) if self[key] in self.inverse and not self.inverse[self[key]]: del self.inverse[self[key]] super(bidict, self).__delitem__(key)</code>
Ciri Utama:
- Atribut songsang mengekalkan pemetaan daripada nilai kepada senarai kunci.
- Apabila pasangan nilai kunci ditambah, pemetaan songsang dikemas kini secara automatik.
- Apabila kunci dipadamkan, pemetaan songsang juga dikemas kini untuk mengalih keluar kunci.
- Sifat dwiarah membenarkan akses d[kunci] dan d[nilai].
- Ia membenarkan berbilang kunci mempunyai nilai yang sama.
Contoh Penggunaan:
<code class="python">bd = bidict({'a': 1, 'b': 2}) print(bd) # {'a': 1, 'b': 2} print(bd.inverse) # {1: ['a'], 2: ['b']} bd['c'] = 1 # Two keys have the same value print(bd) # {'a': 1, 'c': 1, 'b': 2} print(bd.inverse) # {1: ['a', 'c'], 2: ['b']}</code>
Kelebihan:
Pelaksanaan ini menggabungkan kecekapan struktur data dict Python dengan fleksibiliti akses dua arah. Ia merupakan alat yang berkuasa untuk pelbagai aplikasi yang memerlukan pengindeksan berasaskan nilai.
Atas ialah kandungan terperinci Bagaimanakah jadual cincang dua arah dalam Python membolehkan pengindeksan berasaskan kunci dan nilai yang cekap?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Dreamweaver Mac版
Alat pembangunan web visual

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft