Rumah >pembangunan bahagian belakang >Tutorial Python >SQLRAG: Mengubah Interaksi Pangkalan Data dengan Bahasa Semulajadi dan LLM

SQLRAG: Mengubah Interaksi Pangkalan Data dengan Bahasa Semulajadi dan LLM

DDD
DDDasal
2024-10-30 06:15:03591semak imbas

SQLRAG: Transforming Database Interactions with Natural Language and LLMs

Dalam dunia yang dipacu data, di mana kelajuan dan kebolehcapaian kepada cerapan adalah penting, SQLRAG membawa pendekatan baharu untuk berinteraksi dengan pangkalan data. Dengan memanfaatkan kuasa Model Bahasa Besar (LLM), SQLRAG memperkasakan pengguna untuk menanyakan pangkalan data menggunakan bahasa semula jadi, menghapuskan keperluan untuk pengetahuan SQL yang mendalam. Dalam siaran ini, kita akan menyelami cara SQLRAG berfungsi, ciri utamanya dan cara ia memudahkan analisis data dengan antara muka yang elegan, pemprosesan fleksibel dan visualisasi dinamik.

Kelebihan SQLRAG

SQLRAG menyerlah kerana keupayaan uniknya untuk menukar gesaan bahasa semula jadi kepada pertanyaan SQL, menyediakan kedua-dua kod dan visualisasi data serta-merta. Seni bina fleksibelnya menyokong kedua-dua model OpenAI dan alternatif sumber terbuka, menjadikannya boleh diakses oleh pelbagai pengguna daripada pembangun individu kepada perusahaan yang lebih besar. Berikut ialah beberapa sebab SQLRAG semakin popular:

  • Pertanyaan Mesra Pengguna: Pengguna kini boleh berinteraksi dengan pangkalan data yang kompleks tanpa memerlukan kemahiran SQL lanjutan. Gesaan mudah seperti "Tunjukkan saya jualan bulan lepas mengikut wilayah" menjana kod SQL, melaksanakannya dan mempersembahkan data dalam bentuk visual.
  • Fleksibiliti Model LLM: SQLRAG menyokong model OpenAI yang berkuasa dan alternatif sumber terbuka daripada GPT4All, memberikan kebebasan kepada pengguna untuk memilih persekitaran pemprosesan pilihan mereka.
  • Redis Caching for Speed: SQLRAG cache hasil pertanyaan kerap, menggunakan Redis untuk mempercepatkan permintaan berulang dan mengurangkan masa pemprosesan.
  • Penggambaran Data Dipermudahkan: SQLRAG disepadukan dengan Matplotlib untuk visualisasi berasaskan Python dan Chart.js bagi mereka yang lebih suka JavaScript, mencipta cara mudah untuk menukar data menjadi cerapan.

Bagaimana SQLRAG Berfungsi

SQLRAG memudahkan interaksi pangkalan data dengan mengambil input bahasa semula jadi, menukarnya kepada kod SQL, menjalankan pertanyaan pada pangkalan data yang disambungkan, dan kemudian mengeluarkan hasilnya sebagai kod SQL dan sebagai data visual.

Untuk bermula dengan SQLRAG, prasyarat berikut diperlukan:

  • Python 3.10 atau lebih tinggi
  • Redis (pilihan, untuk menyimpan cache pertanyaan berulang)
  • Pangkalan data yang serasi (PostgreSQL, MySQL, SQLite, dll.)
  • Kunci API OpenAI (jika menggunakan model OpenAI)

Setelah dipasang melalui pip, persediaan SQLRAG adalah mudah. Begini rupa aliran penggunaan biasa, dengan pilihan untuk kedua-dua model sumber terbuka dan OpenAI.

Pemasangan dan Persediaan

SQLRAG tersedia sebagai pakej Python dan boleh dipasang dengan pip:

pip install sqlrag

Jika menggunakan OpenAI, sediakan kunci API dalam persekitaran anda:

pip install sqlrag

Bertanya dengan Model Sumber Terbuka

Untuk pengguna yang lebih suka model sumber terbuka, sokongan GPT4All SQLRAG menawarkan pilihan yang fleksibel:

export OPENAI_API_KEY=your_openai_key

Fungsi ini membolehkan pembangun menukar antara model dengan mudah, menjadikannya ideal untuk menguji dan menyepadukan dengan aliran kerja sedia ada.

Menggunakan Model OpenAI

Dengan kunci API OpenAI, pengguna boleh memanfaatkan penyepaduan OpenAI SQLRAG:

from sqlrag.open_sql_rag import OpenSQLRAG

# Connect to the database and specify the model
sql_rag = OpenSQLRAG("sqlite:///mydb.db", model_name="Meta-Llama-3-8B-Instruct.Q4_0.gguf", is_openai=False)

# Generate SQL and visualize data
data = sql_rag.generate_code_and_sql({"chart_type": "chart.js", "query": "List out all customers"})
print(data)

Caching Redis untuk Kelajuan

Untuk mengurangkan lebihan, SQLRAG menyepadukan cache Redis, menyimpan hasil pertanyaan yang kerap digunakan. Ini bukan sahaja menjimatkan masa tetapi juga meningkatkan prestasi apabila menanyakan pangkalan data yang luas.

Pengehosan API

Walaupun direka terutamanya sebagai perpustakaan Python, SQLRAG juga boleh dihoskan sebagai API, menjadikannya mudah untuk disepadukan dengan aplikasi web atau sistem belakang lain, terutamanya untuk projek yang lebih besar atau yang mempunyai interaksi pengguna yang tinggi.

Faedah Utama SQLRAG

  1. Kerumitan Dikurangkan: Pengguna bukan teknikal boleh berinteraksi dengan pangkalan data menggunakan bahasa semula jadi, membebaskan saintis data dan penganalisis untuk menumpukan pada pertanyaan yang lebih kompleks.
  2. Kelajuan dengan Redis Caching: Dengan menyimpan cache pertanyaan popular, SQLRAG meminimumkan masa muat, mewujudkan pengalaman responsif walaupun dalam persekitaran permintaan tinggi.
  3. Pemprosesan Fleksibel: SQLRAG menawarkan kedua-dua pemprosesan CPU dan GPU untuk model sumber terbuka, menampung konfigurasi perkakasan yang berbeza.
  4. Penggambaran Dinamik: Penyepaduan SQLRAG dengan Chart.js dan Matplotlib menjadikan visualisasi data boleh diakses dan disesuaikan, memberikan cerapan yang berkuasa dalam format mesra pengguna.

Masa Depan SQLRAG: Potensi dan Kemungkinan

Dengan fleksibiliti yang meluas, SQLRAG berpotensi untuk merevolusikan cara kami berinteraksi dengan data, menawarkan perniagaan penyelesaian berskala yang memenuhi pelbagai keperluan. Memandangkan komuniti pembangunan menyumbang kepada model sumber terbukanya, SQLRAG berkemungkinan akan terus berkembang, memperkenalkan lebih banyak ciri dan mengembangkan jenis data yang boleh dikendalikannya.

Pemikiran Akhir

SQLRAG bukan sekadar alat; ia merupakan pendekatan inovatif untuk pertanyaan dan visualisasi data. Dengan merapatkan bahasa semula jadi dan SQL, SQLRAG membuka akses data, memudahkan pengguna bukan teknikal untuk mengeluarkan cerapan, memperkasakan pembangun dengan fleksibilitinya dan membolehkan pasukan lebih dipacu data dalam membuat keputusan mereka.

Untuk bermula dengan SQLRAG, lawati repositori PyPi dan sertai komuniti yang membentuk masa depan kebolehcapaian data dengan LLM!

Terima kasih atas masa berharga anda. Anda boleh menyukai siaran saya dan
anda boleh.

Beli saya Kopi

Atas ialah kandungan terperinci SQLRAG: Mengubah Interaksi Pangkalan Data dengan Bahasa Semulajadi dan LLM. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn