


Bagaimana untuk Menggabungkan DataFrames Dijana dalam Gelung Untuk Menggunakan pd.concat?
Menggabungkan DataFrames Dijana dalam For Gelung
Apabila bekerja dengan berbilang sumber data, selalunya perlu untuk menggabungkan data menjadi satu bingkai data yang disatukan . Soalan ini menggambarkan isu biasa yang dihadapi apabila cuba menambah bingkai data yang dijana dalam gelung for menggunakan fungsi pd.concat.
Pendekatan awal yang dibentangkan dalam soalan menghadapi ralat disebabkan seruan pd.append yang salah. Fungsi ini memerlukan sekurang-kurangnya dua argumen, yang pertama ialah kerangka data untuk ditambahkan, manakala argumen kedua haruslah data yang akan ditambahkan. Kod tersebut cuba menambahkan data pada dirinya sendiri, yang tidak sah.
Cara yang betul untuk menambahkan bingkai data ialah menyimpannya dalam senarai dan kemudian menggunakan pd.concat untuk menggabungkannya menjadi satu bingkai data. Berikut ialah penyelesaian yang dipertingkatkan:
<code class="python">appended_data = [] for infile in glob.glob("*.xlsx"): data = pandas.read_excel(infile) appended_data.append(data) # concatenate the list of dataframes appended_data = pd.concat(appended_data) # save the merged dataframe to an excel file appended_data.to_excel('appended.xlsx')</code>
Kod ini mengimport pustaka yang diperlukan, mengulangi fail excel, membaca data daripada setiap fail dan menyimpan bingkai data dalam senarai. Akhir sekali, ia menggunakan pd.concat untuk menggabungkan senarai bingkai data dan mengeksport bingkai data yang digabungkan ke fail excel baharu. Pendekatan ini membolehkan penambahan bingkai data yang lancar yang dijana dalam gelung.
Atas ialah kandungan terperinci Bagaimana untuk Menggabungkan DataFrames Dijana dalam Gelung Untuk Menggunakan pd.concat?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Sebab -sebab mengapa skrip Python tidak dapat dijalankan pada sistem Unix termasuk: 1) kebenaran yang tidak mencukupi, menggunakan chmod xyour_script.py untuk memberikan kebenaran pelaksanaan; 2) garis shebang yang tidak betul atau hilang, anda harus menggunakan #!/Usr/bin/envpython; 3) tetapan pembolehubah persekitaran yang salah, anda boleh mencetak debugging os.environ; 4) Menggunakan versi Python yang salah, anda boleh menentukan versi pada garis Shebang atau baris arahan; 5) masalah pergantungan, menggunakan persekitaran maya untuk mengasingkan ketergantungan; 6) Kesalahan sintaks, gunakan python-mpy_compileyour_script.py untuk mengesan.

Menggunakan tatasusunan python lebih sesuai untuk memproses sejumlah besar data berangka daripada senarai. 1) Array menjimatkan lebih banyak memori, 2) array lebih cepat untuk beroperasi dengan nilai berangka, 3) Arrays Force Jenis Konsistensi, 4) Array bersesuaian dengan array C, tetapi tidak fleksibel dan mudah seperti senarai.

Listsare yang lebih baik lebih baik foreflexibilityandmixdatatatypes, whilearraysares sand sumerical sand sand sand lared datasets.1) Senarai yang tidak dapat diselaraskan xibility, mixeddatatypes, dan elementChanges.2) Operasi sensori UsArray, LargedataSet, dan WhenmememoryefficyFiciency.2

NumpyManagesMemoryforlargeArraySefficientlyusingViews, salinan, danMemory-mappedfiles.1) viewSallowSlicingWithoutCopying, secara langsungModifyingTheoriginalArray.2) copiescanbecreatedwithTheCopy () methorpreserveservervesvesverdata.3) MemoriSberServervesvesves

Listsinpythondonotrequireimportingamodule, whilearraysfromthearraymoduledoneedanimport.1) listsarebuilt-in, serba boleh, dancanholdmixeddatatypes.2) arraysaremorememory-efficientfornumericydatabuTabeSflexible, yang tidak dapat dilupakan.

Pythonlistscanstoreanydatatype, arraymoduleArraysstoreonetype, andnumpyarraysarefornumumericalcomputations.1) listsareversatileButlessMememory-efficient.2) arraymoduleArduleArrayRaysarememory-efficientforhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogenhomogen

KetikayyoUttemptToStoreAveFheWrongatatypeinapythonArray, anda akan menjadicounteratypeerror

Pythonlistsarepartofthestandardlibrary, sementara


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) ialah aplikasi web PHP/MySQL yang sangat terdedah. Matlamat utamanya adalah untuk menjadi bantuan bagi profesional keselamatan untuk menguji kemahiran dan alatan mereka dalam persekitaran undang-undang, untuk membantu pembangun web lebih memahami proses mengamankan aplikasi web, dan untuk membantu guru/pelajar mengajar/belajar dalam persekitaran bilik darjah Aplikasi web keselamatan. Matlamat DVWA adalah untuk mempraktikkan beberapa kelemahan web yang paling biasa melalui antara muka yang mudah dan mudah, dengan pelbagai tahap kesukaran. Sila ambil perhatian bahawa perisian ini

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft
