


Komunikasi Antara Proses dalam Python
Komunikasi Antara Proses (IPC) membolehkan komunikasi antara berbilang proses Python yang sedang berjalan. Meneroka pelbagai pilihan, seperti menggunakan paip bernama, perkhidmatan dbus dan soket, boleh menjadi mencabar. Artikel ini membentangkan penyelesaian peringkat lebih tinggi dan mantap menggunakan perpustakaan berbilang pemprosesan.
Menggunakan Pustaka Berbilang pemprosesan
Perpustakaan berbilang pemprosesan menawarkan cara yang mudah dan cekap untuk melaksanakan IPC dalam Python. Ia menyediakan pendengar dan pelanggan yang merangkum soket dan membolehkan anda menukar objek Python secara langsung.
Mendengar Mesej
Untuk mencipta proses mendengar, gunakan kelas Pendengar:
<code class="python">from multiprocessing.connection import Listener address = ('localhost', 6000) listener = Listener(address, authkey=b'secret password') conn = listener.accept() print('connection accepted from', listener.last_accepted)</code>
Pendengar menunggu pada alamat IP dan port yang ditentukan untuk sambungan masuk. Setelah sambungan diwujudkan, objek Sambungan (sambungan) dikembalikan.
Menghantar Mesej
Untuk menghantar mesej sebagai objek Python, gunakan kelas Klien:
<code class="python">from multiprocessing.connection import Client address = ('localhost', 6000) conn = Client(address, authkey=b'secret password') conn.send('close') conn.close()</code>
Kelas Pelanggan bersambung ke alamat yang ditentukan dan boleh menghantar objek sewenang-wenangnya ke proses mendengar.
Contoh Pelaksanaan
Pertimbangkan kes penggunaan mudah di mana satu proses (listener.py) mendengar mesej dan yang lain (client.py) menghantar mesej.
pendengar.py:
<code class="python">from multiprocessing.connection import Listener listener = Listener(('localhost', 6000), authkey=b'secret password') conn = listener.accept() message = conn.recv() if message == 'close': conn.close() listener.close() exit(0) else: conn.close() listener.close() exit(1)</code>
client.py:
<code class="python">from multiprocessing.connection import Client conn = Client(('localhost', 6000), authkey=b'secret password') conn.send('close') conn.close()</code>
Apabila anda menjalankan listener.py dan kemudian client.py, proses pendengar akan menerima mesej dan keluar dengan kod pulangan 0, yang menunjukkan kejayaan. Jika mesej tidak sah dihantar, pendengar akan keluar dengan kod pulangan bukan sifar, menunjukkan kegagalan.
Contoh ini menunjukkan kemudahan dan fleksibiliti menggunakan perpustakaan berbilang pemprosesan untuk komunikasi antara proses dalam Python. Ia menyediakan abstraksi peringkat lebih tinggi pada soket, membolehkan anda menghantar dan menerima objek Python dengan lancar antara proses.
Atas ialah kandungan terperinci Bagaimanakah perpustakaan berbilang pemprosesan Python dapat memudahkan Komunikasi Antara Proses?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Memilih Python atau C bergantung kepada keperluan projek: 1) Jika anda memerlukan pembangunan pesat, pemprosesan data dan reka bentuk prototaip, pilih Python; 2) Jika anda memerlukan prestasi tinggi, latensi rendah dan kawalan perkakasan yang rapat, pilih C.

Dengan melabur 2 jam pembelajaran python setiap hari, anda dapat meningkatkan kemahiran pengaturcaraan anda dengan berkesan. 1. Ketahui Pengetahuan Baru: Baca dokumen atau tutorial menonton. 2. Amalan: Tulis kod dan latihan lengkap. 3. Kajian: Menyatukan kandungan yang telah anda pelajari. 4. Amalan Projek: Sapukan apa yang telah anda pelajari dalam projek sebenar. Pelan pembelajaran berstruktur seperti ini dapat membantu anda menguasai Python secara sistematik dan mencapai matlamat kerjaya.

Kaedah untuk belajar python dengan cekap dalam masa dua jam termasuk: 1. Semak pengetahuan asas dan pastikan anda sudah biasa dengan pemasangan Python dan sintaks asas; 2. Memahami konsep teras python, seperti pembolehubah, senarai, fungsi, dan lain -lain; 3. Menguasai penggunaan asas dan lanjutan dengan menggunakan contoh; 4. Belajar kesilapan biasa dan teknik debugging; 5. Memohon pengoptimuman prestasi dan amalan terbaik, seperti menggunakan komprehensif senarai dan mengikuti panduan gaya PEP8.

Python sesuai untuk pemula dan sains data, dan C sesuai untuk pengaturcaraan sistem dan pembangunan permainan. 1. Python adalah mudah dan mudah digunakan, sesuai untuk sains data dan pembangunan web. 2.C menyediakan prestasi dan kawalan yang tinggi, sesuai untuk pembangunan permainan dan pengaturcaraan sistem. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Python lebih sesuai untuk sains data dan perkembangan pesat, manakala C lebih sesuai untuk prestasi tinggi dan pengaturcaraan sistem. 1. Sintaks Python adalah ringkas dan mudah dipelajari, sesuai untuk pemprosesan data dan pengkomputeran saintifik. 2.C mempunyai sintaks kompleks tetapi prestasi yang sangat baik dan sering digunakan dalam pembangunan permainan dan pengaturcaraan sistem.

Adalah mungkin untuk melabur dua jam sehari untuk belajar Python. 1. Belajar Pengetahuan Baru: Ketahui konsep baru dalam satu jam, seperti senarai dan kamus. 2. Amalan dan Amalan: Gunakan satu jam untuk melakukan latihan pengaturcaraan, seperti menulis program kecil. Melalui perancangan dan ketekunan yang munasabah, anda boleh menguasai konsep teras Python dalam masa yang singkat.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma
