


Latihan Keras dengan Set Data Terhad
Dalam cuba melatih rangkaian saraf dengan Keras, anda mendapati ia hanya menggunakan sebahagian daripada yang tersedia set data, walaupun mempunyai akses kepada 60,000 sampel. Semasa anda mengikuti panduan TensorFlow rasmi, proses latihan menunjukkan percanggahan. Artikel ini bertujuan untuk menerangkan sebab Keras berkelakuan dengan cara ini dan menyediakan penyelesaian.
Sebab Disebalik Penggunaan Separa Set Data
Nombor "1875" yang ditemui semasa pemasangan model tidak tidak mewakili bilangan sampel latihan; sebaliknya, ia menunjukkan bilangan kelompok. Secara lalai, Keras menggunakan saiz kelompok 32 semasa latihan. Untuk set data dengan 60,000 sampel, ini bersamaan dengan:
60,000 / 32 = 1875
Oleh itu, Keras membahagikan set data anda kepada 1875 kelompok, setiap satu mengandungi 32 sampel. Akibatnya, setiap zaman berulang pada 1875 kelompok ini dan bukannya keseluruhan set data.
Penyelesaian
Untuk menggunakan keseluruhan set data, anda boleh menetapkan saiz kelompok secara eksplisit kepada jumlah bilangan sampel:
<code class="python">model.fit(train_images, train_labels, epochs=10, batch_size=60000)</code>
Dengan berbuat demikian, Keras akan melatih model pada keseluruhan set data anda, yang mungkin menghasilkan prestasi yang lebih baik.
Atas ialah kandungan terperinci Mengapakah Keras hanya melatih sebahagian daripada set data saya, walaupun saya mempunyai 60,000 sampel?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Inpython, youAppendElementStoalistusingTheAppend () method.1) useAppend () forsingLements: my_list.append (4) .2) useextend () or = formultipleelements: my_list.extend (lain_list) ormy_list = [4,5,6] .3) UseInsert () ForSpecificPositions: my_list.insert (1,5) .beaware

Kaedah untuk debug masalah shebang termasuk: 1. Semak garis shebang untuk memastikan ia adalah baris pertama skrip dan tidak ada ruang prefixed; 2. Sahkan sama ada laluan penterjemah adalah betul; 3. Panggil jurubahasa secara langsung untuk menjalankan skrip untuk mengasingkan masalah shebang; 4. Gunakan tali atau amanah untuk mengesan panggilan sistem; 5. Periksa kesan pembolehubah persekitaran pada shebang.

PythonlistscanbemanipulaterAnseveralMethodstoremoveelements: 1) theremove () methodRemoveStHefirStoccrencrentrenceAfaspiedValue.2)

Pythonlistscanstoreanydatatype, termasuk interintegers, strings, floats, booleans, otherlists, dandictionaries

PythonlistsSupportnumerousoperations: 1) addingElementSwithAppend (), extend (), andInsert ()

Buat tatasusunan pelbagai dimensi dengan numpy dapat dicapai melalui langkah-langkah berikut: 1) Gunakan fungsi numpy.array () untuk membuat array, seperti Np.Array ([[1,2,3], [4,5,6]]) untuk membuat array 2D; 2) Gunakan np.zeros (), np.ones (), np.random.random () dan fungsi lain untuk membuat array yang diisi dengan nilai tertentu; 3) Memahami sifat bentuk dan saiz array untuk memastikan bahawa panjang sub-array adalah konsisten dan mengelakkan kesilapan; 4) Gunakan fungsi np.reshape () untuk mengubah bentuk array; 5) Perhatikan penggunaan memori untuk memastikan bahawa kod itu jelas dan cekap.

Broadcastinginginnumpyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.itsImplifiescode, enhancesreadability, andboostsperformance.here'showitworks: 1) smallerarraysarepaddedwithonestomatchdimensions.2) CompatibeSt

Forpythondatastorage, chooselistsforflexabilityWithMixedDatatypes, array.arrayformemory-efficienthomogeneousnumericaldata, andnumpyarraysforadvancednumericalcomputing.listsareversatileButlessefficefientfientfientfientfientfientfientfientfientfientfientfientforydodeSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShiSforayDataSetSetShoFficeSforaydataSetShoSforayDataSetsforayDataSetsforayDataSetsforaydataSetShiSforayDodeSforayDodeSforaydataSetRaydataSetRaydataSetRaydataSet


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.
