


Bagaimana untuk Mencapai Penggantian Rentetan Separa dalam Panda Menggunakan Kaedah `replace()`?
Mengatasi Teka-teki "replace()" dalam Pandas DataFrames
Apabila cuba menggantikan rentetan tertentu dalam Pandas DataFrame menggunakan replace() kaedah, pengguna mungkin menghadapi keadaan di mana penggantian tidak berlaku seperti yang diharapkan. Untuk menyelesaikan isu ini, adalah penting untuk memahami cara fungsi replace() beroperasi.
Secara lalai, kaedah replace() melakukan penggantian penuh, bermakna ia hanya menukar rentetan lengkap dengan rentetan lengkap yang lain. Penggantian separa, di mana hanya bahagian rentetan diganti, memerlukan penggunaan ungkapan biasa. Untuk mendayakan padanan ungkapan biasa, tetapkan parameter regex kepada True.
Contohnya, dalam coretan kod yang disediakan:
<code class="python">d = {'color' : pd.Series(['white', 'blue', 'orange']), 'second_color': pd.Series(['white', 'black', 'blue']), 'value' : pd.Series([1., 2., 3.])} df = pd.DataFrame(d) df.replace('white', np.nan)</code>
Memandangkan parameter regex tidak ditentukan, kaedah replace() mencuba penggantian penuh, yang gagal mengubah suai DataFrame. Untuk mencapai penggantian separa, di mana semua kejadian "putih" digantikan dengan nan, ubah suai kod seperti berikut:
<code class="python">df.replace('white', np.nan, regex=True)</code>
Pengubahsuaian ini memastikan kaedah replace() memanfaatkan ungkapan biasa untuk pemadanan, membenarkan separa penggantian akan berlaku.
Atas ialah kandungan terperinci Bagaimana untuk Mencapai Penggantian Rentetan Separa dalam Panda Menggunakan Kaedah `replace()`?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem

InPython,a"list"isaversatile,mutablesequencethatcanholdmixeddatatypes,whilean"array"isamorememory-efficient,homogeneoussequencerequiringelementsofthesametype.1)Listsareidealfordiversedatastorageandmanipulationduetotheirflexibility

Pythonlistsandarraysarebothmutable.1) listsareflexibleandsupportheterogeneousdatabutarelessmememory.2) arraysaremorememoremoryficorhomogeneousdatabutlessatile, memerlukanCorrectypecodeusagetoavoiderrors.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Memilih Python atau C bergantung kepada keperluan projek: 1) Jika anda memerlukan pembangunan pesat, pemprosesan data dan reka bentuk prototaip, pilih Python; 2) Jika anda memerlukan prestasi tinggi, latensi rendah dan kawalan perkakasan yang rapat, pilih C.

Dengan melabur 2 jam pembelajaran python setiap hari, anda dapat meningkatkan kemahiran pengaturcaraan anda dengan berkesan. 1. Ketahui Pengetahuan Baru: Baca dokumen atau tutorial menonton. 2. Amalan: Tulis kod dan latihan lengkap. 3. Kajian: Menyatukan kandungan yang telah anda pelajari. 4. Amalan Projek: Sapukan apa yang telah anda pelajari dalam projek sebenar. Pelan pembelajaran berstruktur seperti ini dapat membantu anda menguasai Python secara sistematik dan mencapai matlamat kerjaya.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Dreamweaver Mac版
Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.
