Rumah >pembangunan bahagian belakang >Tutorial Python >Bagaimana untuk Mengeluarkan Peraturan Keputusan daripada scikit-learn Decision Trees?
Pengeluaran Peraturan Keputusan daripada scikit-learn Decision Trees
Pernyataan Masalah:
Bolehkah peraturan keputusan yang mendasari model pepohon keputusan terlatih diekstrak sebagai senarai teks?
Penyelesaian:
Menggunakan fungsi tree_to_code, adalah mungkin untuk menjana fungsi Python yang sah yang mewakili peraturan keputusan pepohon keputusan scikit-learn:
<code class="python">from sklearn.tree import _tree def tree_to_code(tree, feature_names): tree_ = tree.tree_ feature_name = [ feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!" for i in tree_.feature ] print("def tree({}):".format(", ".join(feature_names))) def recurse(node, depth): indent = " " * depth if tree_.feature[node] != _tree.TREE_UNDEFINED: name = feature_name[node] threshold = tree_.threshold[node] print("{}if {} <= {}:".format(indent, name, threshold)) recurse(tree_.children_left[node], depth + 1) print("{}else: # if {} > {}".format(indent, name, threshold)) recurse(tree_.children_right[node], depth + 1) else: print("{}return {}".format(indent, tree_.value[node])) recurse(0, 1)</code>
Contoh:
Untuk pepohon keputusan yang cuba mengembalikan inputnya (nombor antara 0 dan 10), fungsi tree_to_code akan mencetak fungsi Python berikut:
<code class="python">def tree(f0): if f0 <= 6.0: if f0 <= 1.5: return [[ 0.]] else: # if f0 > 1.5 if f0 <= 4.5: if f0 <= 3.5: return [[ 3.]] else: # if f0 > 3.5 return [[ 4.]] else: # if f0 > 4.5 return [[ 5.]] else: # if f0 > 6.0 if f0 <= 8.5: if f0 <= 7.5: return [[ 7.]] else: # if f0 > 7.5 return [[ 8.]] else: # if f0 > 8.5 return [[ 9.]]</code>
Kaveat:
Elakkan isu biasa berikut:
Atas ialah kandungan terperinci Bagaimana untuk Mengeluarkan Peraturan Keputusan daripada scikit-learn Decision Trees?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!