


Memahami Tugasan Berantai dalam Panda
Pengenalan:
Semasa bekerja dengan Panda, pengguna mungkin menghadapi amaran "SettingWithCopy" yang menimbulkan kebimbangan tentang kelakuan operasi pada struktur data. Artikel ini bertujuan untuk menjelaskan konsep tugasan berantai dan implikasinya dalam Panda, dengan perhatian khusus kepada peranan .ix(), .iloc(), dan .loc().
Tugasan Berantai Dijelaskan
Dalam Panda, tugasan berantai melibatkan satu siri operasi yang dilakukan pada DataFrame atau Siri yang menetapkan nilai pada lajur atau elemen tertentu. Walau bagaimanapun, memberikan nilai kepada Siri atau DataFrame secara langsung boleh mengakibatkan tingkah laku yang tidak dijangka kerana kemungkinan salinan dicipta.
Mengesan Tugasan Berantai
Panda mengeluarkan amaran (SettingWithCopyWarnings) apabila ia mengesyaki bahawa tugasan berantai adalah sedang digunakan. Amaran ini bertujuan untuk memaklumkan pengguna tentang kemungkinan akibat yang tidak diingini, kerana ia boleh menyebabkan salinan data diubah suai, menyebabkan kekeliruan.
Kesan .ix(), .iloc(), dan .loc() pada Chained Tugasan
Pilihan kaedah .ix(), .iloc(), atau .loc() tidak secara langsung mempengaruhi tugasan berantai. Kaedah ini digunakan terutamanya untuk pemilihan baris dan lajur dan tidak menjejaskan gelagat tugasan.
Akibat Tugasan Berantai
Tugasan berangkai berpotensi membawa kepada hasil yang tidak dijangka, seperti salinan data yang sedang diubah suai bukannya objek asal. Ini boleh menyebabkan kekeliruan dan menyukarkan untuk mengesan perubahan dan mengenal pasti keadaan data yang betul.
Mengelakkan Tugasan dan Amaran Berantai
Untuk mengelakkan tugasan berantai dan amaran yang terhasil, adalah disyorkan untuk melaksanakan operasi pada salinan data dan bukannya objek asal. Ini memastikan bahawa perubahan digunakan pada lokasi yang dikehendaki tanpa sebarang kesamaran.
Melumpuhkan Amaran Tugasan Berantai
Jika mahu, pengguna boleh melumpuhkan amaran rantaian dengan menetapkan pilihan 'chained_assignment' kepada 'Tiada' menggunakan pd.set_option(). Walau bagaimanapun, biasanya tidak digalakkan untuk melumpuhkan amaran ini kerana ia berfungsi sebagai penunjuk berharga bagi isu yang berpotensi.
Contoh Tugasan Berantai
Pertimbangkan contoh yang disediakan dalam permintaan asal:
data['amount'] = data['amount'].astype(float) data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True) data["amount"].fillna(mean_avg, inplace=True)
Dalam contoh ini, baris pertama memberikan nilai kepada lajur 'jumlah', yang mungkin mencipta salinan atau tidak. Baris berikutnya beroperasi pada lajur 'jumlah', yang boleh menjadi salinan dan bukannya data asal. Adalah lebih jelas untuk memberikan hasil operasi fillna() kepada lajur atau pembolehubah baharu dan bukannya mengubah suai lajur 'jumlah' secara langsung.
Kod Disyorkan
Untuk mengelakkan tugasan rantaian dalam contoh diberikan, kod berikut disyorkan:
new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean")) data["new_amount"] = new_amount.fillna(mean_avg)
Atas ialah kandungan terperinci Bilakah Tugasan Berantai Menjadi Bermasalah dalam Panda?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver Mac版
Alat pembangunan web visual

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.