


Penyulitan Selamat Menggunakan Kunci Simetri
Pendekatan yang disyorkan untuk penyulitan selamat dalam Python ialah menggunakan resipi Fernet daripada perpustakaan kriptografi. Ia menggunakan penyulitan AES CBC dengan HMAC untuk pengesahan integriti, melindungi data secara berkesan daripada gangguan dan penyahsulitan tanpa kebenaran.
Penyulitan dan Penyahsulitan Fernet
<code class="python">from cryptography.fernet import Fernet # Generate a secret key for encryption key = Fernet.generate_key() # Encode a message (plaintext) encoded_message = Fernet(key).encrypt(b"John Doe") # Decode the encrypted message (ciphertext) decoded_message = Fernet(key).decrypt(encoded_message) print(decoded_message.decode()) # Output: John Doe</code>
Kunci Fernet Diperolehi Kata Laluan
<code class="python">from cryptography.fernet import Fernet from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes def derive_key(password): kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=secrets.token_bytes(16), iterations=100_000, backend=default_backend() ) return b64e(kdf.derive(password.encode())) # Generate a password using a key derivation function key = derive_key(password) # Encrypt and decrypt using the password-derived Fernet key encoded_message = Fernet(key).encrypt(b"John Doe") decoded_message = Fernet(key).decrypt(encoded_message) print(decoded_message.decode()) # Output: John Doe</code>Mengkaburkan DataUntuk data tidak sensitif, pertimbangkan untuk menggunakan base64 pengekodan dan bukannya penyulitan:
<code class="python">from base64 import urlsafe_b64encode as b64e # Encode data encoded_data = b64e(b"Hello world!") # Decode data decoded_data = b64d(encoded_data) print(decoded_data) # Output: b'Hello world!'</code>Menandatangani DataMenandatangani data untuk memastikan integriti menggunakan HMAC:
<code class="python">import hmac import hashlib # Sign data using a secret key key = secrets.token_bytes(32) signature = hmac.new(key, b"Data to sign", hashlib.sha256).digest() # Verify the signature def verify(data, signature, key): expected = hmac.new(key, data, hashlib.sha256).digest() return hmac.compare_digest(expected, signature) # Verify the signature using the same key print(verify(b"Data to sign", signature, key)) # Output: True</code>Lain-lain: Pelaksanaan Skim Tidak Selamat yang Betul
AES CFB:
<code class="python">import secrets from base64 import urlsafe_b64encode as b64e, urlsafe_b64decode as b64d from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend backend = default_backend() def aes_cfb_encrypt(message, key): algorithm = algorithms.AES(key) iv = secrets.token_bytes(algorithm.block_size // 8) cipher = Cipher(algorithm, modes.CFB(iv), backend=backend) encryptor = cipher.encryptor() return b64e(iv + encryptor.update(message) + encryptor.finalize()) def aes_cfb_decrypt(ciphertext, key): iv_ciphertext = b64d(ciphertext) algorithm = algorithms.AES(key) size = algorithm.block_size // 8 iv, encrypted = iv_ciphertext[:size], iv_ciphertext[size:] cipher = Cipher(algorithm, modes.CFB(iv), backend=backend) decryptor = cipher.decryptor() return decryptor.update(encrypted) + decryptor.finalize()</code>
AES ECB:
<code class="python">from base64 import urlsafe_b64encode as b64e, urlsafe_b64decode as b64d from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.primitives import padding from cryptography.hazmat.backends import default_backend backend = default_backend() def aes_ecb_encrypt(message, key): cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=backend) encryptor = cipher.encryptor() padder = padding.PKCS7(cipher.algorithm.block_size).padder() padded_message = padder.update(message.encode()) + padder.finalize() return b64e(encryptor.update(padded_message) + encryptor.finalize()) def aes_ecb_decrypt(ciphertext, key): cipher = Cipher(algorithms.AES(key), modes.ECB(), backend=backend) decryptor = cipher.decryptor() unpadder = padding.PKCS7(cipher.algorithm.block_size).unpadder() padded_message = decryptor.update(b64d(ciphertext)) + decryptor.finalize() return unpadder.update(padded_message) + unpadder.finalize()</code>
Nota: AES ECB bukan disyorkan untuk penyulitan selamat.
Atas ialah kandungan terperinci Bagaimana untuk Memastikan Penyulitan Selamat dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver Mac版
Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows
Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.