cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana untuk Mengakses Tatasusunan Berbilang Dimensi dengan Tatasusunan (n-1)-Dimensi?

How to Access Multidimensional Arrays with (n-1)-Dimensional Arrays?

Mengakses Tatasusunan Berbilang Dimensi dengan Tatasusunan (n-1)-Dimensi: Panduan Komprehensif

Dalam bidang tatasusunan berbilang dimensi, timbul suatu yang menggembirakan cabaran: mengakses tatasusunan n-dimensi dengan tatasusunan (n-1)-dimensi di sepanjang dimensi tertentu. Teka-teki ini telah memikat ramai saintis data dan pengaturcara.

Masalah: Membedah Susunan Berbilang Dimensi

Bayangkan tatasusunan 3 dimensi, a, penuh dengan nilai berangka yang diedarkan merentasi tiga paksinya. Sekarang, andaikan kita mempunyai keinginan yang tidak putus-putus untuk mengekstrak maksimum sepanjang dimensi tertentu, katakan yang pertama. Bagaimanakah kita boleh mencapai ini dengan tatasusunan (n-1)-dimensi, idx, yang memegang indeks maksimum sepanjang dimensi itu?

Penyelesaian 1: Melepaskan Kuasa Pengindeksan Lanjutan

Memanfaatkan kekuatan pengindeksan lanjutan, kami boleh mencipta penyelesaian kepada dilema kami. Dengan memanfaatkan fungsi grid numpy, kami boleh menjana koordinat dengan cekap yang merangkumi bentuk setiap dimensi a, kecuali untuk dimensi yang ingin kami indeks. Operasi ini memberi kita keupayaan untuk mengakses maksimum a seolah-olah diekstrak melalui a.max(axis=0).

<code class="python">m, n = a.shape[1:]
I, J = np.ogrid[:m, :n]
a_max_values = a[idx, I, J]</code>

Penyelesaian 2: Pendekatan Generik untuk Massa

Bagi mereka yang mencari penyelesaian yang lebih umum, kami memperkenalkan argmax_to_max. Fungsi bijak ini memberi kuasa kepada kami untuk meniru gelagat arr.max(axis) daripada argmax dan arr dengan mudah. Reka bentuknya yang elegan memudahkan tugas meruntuhkan indeks dengan komplotnya yang rumit.

<code class="python">def argmax_to_max(arr, argmax, axis):
    new_shape = list(arr.shape)
    del new_shape[axis]

    grid = np.ogrid[tuple(map(slice, new_shape))]
    grid.insert(axis, argmax)

    return arr[tuple(grid)]</code>

Mengindeks Tatasusunan Berbilang Dimensi: Mendedahkan Kehalusan

Melebihi pengekstrakan maksima, mengakses tatasusunan berbilang dimensi dengan tatasusunan (n-1)-dimensi memberikan satu lagi cabaran yang menarik. Dengan menguraikan bentuk tatasusunan ke dalam grid berdimensi (n-1), all_idx memudahkan perolehan semula nilai elemen yang ditetapkan oleh indeks.

<code class="python">def all_idx(idx, axis):
    grid = np.ogrid[tuple(map(slice, idx.shape))]
    grid.insert(axis, idx)
    return tuple(grid)</code>

Berbekalkan senjata teknik index-mangling ini, anda kini memiliki intelek modal untuk menakluki cabaran mengakses tatasusunan berbilang dimensi dengan tatasusunan (n-1)-dimensi dalam pengembaraan perbalahan data anda. Semoga ia membawa anda kejayaan dan pencerahan!

Atas ialah kandungan terperinci Bagaimana untuk Mengakses Tatasusunan Berbilang Dimensi dengan Tatasusunan (n-1)-Dimensi?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python vs C: Pengurusan dan Kawalan MemoriPython vs C: Pengurusan dan Kawalan MemoriApr 19, 2025 am 12:17 AM

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Python untuk pengkomputeran saintifik: rupa terperinciPython untuk pengkomputeran saintifik: rupa terperinciApr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python dan C: Mencari alat yang betulPython dan C: Mencari alat yang betulApr 19, 2025 am 12:04 AM

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python untuk sains data dan pembelajaran mesinPython untuk sains data dan pembelajaran mesinApr 19, 2025 am 12:02 AM

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa