


Bagaimana untuk Melakukan Penciptaan Lajur Bersyarat dalam DataFrames Pandas Python?
Mencipta Lajur Berdasarkan Logik Bersyarat dalam Python
Apabila bekerja dengan Pandas DataFrames, kita sering menghadapi senario di mana kita perlu mencipta yang baharu lajur berdasarkan semakan bersyarat antara lajur sedia ada. Ini boleh dicapai menggunakan fungsi np.where dengan keadaan bersarang.
Untuk menggambarkan, pertimbangkan DataFrame berikut:
<code class="python">import pandas as pd df = pd.DataFrame({ "A": [2, 3, 1], "B": [2, 1, 3] })</code>
Kami ingin mencipta lajur C baharu berdasarkan kriteria berikut :
- Jika A bersamaan dengan B, C hendaklah 0.
- Jika A lebih besar daripada B, C hendaklah 1.
- Jika A kurang daripada B , C hendaklah -1.
Menggunakan Fungsi Tersuai
Satu pendekatan ialah mencipta fungsi tersuai yang melaksanakan logik bersyarat dan menggunakannya pada DataFrame:
<code class="python">def f(row): if row['A'] == row['B']: return 0 elif row['A'] > row['B']: return 1 else: return -1 df['C'] = df.apply(f, axis=1)</code>
Menggunakan np.where
Sebagai alternatif, kita boleh menggunakan fungsi np.where untuk menetapkan nilai terus kepada lajur baharu:
<code class="python">df['C'] = np.where(df['A'] == df['B'], 0, np.where(df['A'] > df['B'], 1, -1))</code>
Pendekatan ini divektorkan dan lebih cekap untuk set data yang besar.
Keputusan:
Kedua-dua pendekatan menghasilkan keputusan berikut:
<code class="python">print(df) A B C 0 2 2 0 1 3 1 1 2 1 3 -1</code>
Atas ialah kandungan terperinci Bagaimana untuk Melakukan Penciptaan Lajur Bersyarat dalam DataFrames Pandas Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Arraysinpython, terutamanya yang, arecrucialinscientificificputingputingfortheirefficiencyandversatility.1) mereka yang digunakan untuk

Anda boleh menguruskan versi python yang berbeza dengan menggunakan Pyenv, Venv dan Anaconda. 1) Gunakan pyenv untuk menguruskan pelbagai versi python: Pasang pyenv, tetapkan versi global dan tempatan. 2) Gunakan VENV untuk mewujudkan persekitaran maya untuk mengasingkan kebergantungan projek. 3) Gunakan Anaconda untuk menguruskan versi python dalam projek sains data anda. 4) Simpan sistem python untuk tugas peringkat sistem. Melalui alat dan strategi ini, anda dapat menguruskan versi Python yang berbeza untuk memastikan projek yang lancar.

Numpyarrayshaveseveraladvantagesoverstanderardpythonarrays: 1) thearemuchfasterduetoc-assedimplementation, 2) thearemorememory-efficient, antyedlargedataSets, and3) theyofferoptimized, vectorizedfuncionsformathhematicalicalicalicialisation

Kesan homogenitas tatasusunan pada prestasi adalah dwi: 1) homogenitas membolehkan pengkompil untuk mengoptimumkan akses memori dan meningkatkan prestasi; 2) tetapi mengehadkan kepelbagaian jenis, yang boleh menyebabkan ketidakcekapan. Singkatnya, memilih struktur data yang betul adalah penting.

ToCraftExecutablePythonscripts, ikutiTheseBestPractics: 1) addAshebangline (#!/Usr/bin/envpython3) tomakethescriptexecutable.2) setpermissionswithchmod xyour_script.py.3)

Numpyarraysarebetterfornumericationsoperationsandmulti-dimensialdata, whiletheArrayModuleissuitiableforbasic, ingatan-efisienArrays.1) numpyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2) thearrayModeMoremoremory-efficientModeMoremoremoremory-efficientModeMoremoremoremory-efficenceismemoremoremoremoremoremoremoremory-efficenceismemoremoremoremoremorem

NumpyarraysareBetterforheavynumericalcomputing, whilethearraymoduleismoresuitifFormemory-constrainedprojectswithsimpledatypes.1) numpyarraysofferversativilityandperformanceForlargedATAsetSandcomplexoperations.2)

ctypesallowscreatingandmanipulatingc-stylearraysinpython.1) usectypestointerwithclibrariesforperformance.2) createec-stylearraysfornumericalcomputations.3) Passarraystocfuntionsforficientsoperations.however, becautiousofmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmemmem


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Penyesuai Pelayan SAP NetWeaver untuk Eclipse
Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod
