cari
Rumahpembangunan bahagian belakangTutorial PythonBagaimana untuk Plot Taburan Kod Warna mengikut Nilai Lajur dalam Python?

How to Color-Code Scatter Plots by Column Values in Python?

Plot Taburan Pengekodan Warna mengikut Nilai Lajur dalam Python

Dalam visualisasi data, memberikan warna kepada kategori berbeza boleh meningkatkan kejelasan dan mendedahkan corak. Fungsi ini tersedia dalam ggplot2 untuk R, tetapi bagaimana kita boleh mencapai perkara yang sama dalam Python menggunakan panda dan matplotlib?

Kemas kini: Peningkatan Seaborn

Sejak jawapan asal , Seaborn telah muncul sebagai perpustakaan yang berkuasa untuk mencipta plot bermaklumat dan menarik secara visual. Kemas kini terbarunya menawarkan fungsi yang mudah untuk mewarna plot taburan berdasarkan nilai lajur:

  • Menggunakan seaborn.replot: Fungsi peringkat tinggi ini menggabungkan aspek matplotlib.pyplot.scatter dan Seaborn's FacetGrid. Ia secara automatik mengendalikan pengekodan warna berdasarkan warna dan parameter pesanan yang ditentukan.
  • Memetakan matplotlib.pyplot.scatter ke seaborn.FacetGrid: Sama seperti pendekatan asal, anda boleh memetakan fungsi serakan pada FacetGrid dan sesuaikan warna berdasarkan warna.

Pendekatan Panda dan Matplotlib Asal

Bagi mereka yang mencari pendekatan langsung dengan Matplotlib, berikut ialah fungsi tersuai yang menetapkan warna kepada mata berdasarkan lajur kategori:

<code class="python">import matplotlib.pyplot as plt
import pandas as pd

def dfScatter(df, xcol='Height', ycol='Weight', catcol='Gender'):
    fig, ax = plt.subplots()
    categories = np.unique(df[catcol])
    colors = np.linspace(0, 1, len(categories))
    colordict = dict(zip(categories, colors))

    df["Color"] = df[catcol].apply(lambda x: colordict[x])
    ax.scatter(df[xcol], df[ycol], c=df["Color"])
    return fig</code>

Fungsi ini mencipta kamus warna daripada nilai kategori unik dan memberikan warna yang sepadan kepada titik data. Plot taburan kemudian dijana dengan titik berkod warna.

Contoh

Menggunakan kerangka data sampel yang disediakan:

<code class="python">df = pd.DataFrame({'Height': np.append(np.random.normal(6, 0.25, size=5), np.random.normal(5.4, 0.25, size=5)),
                   'Weight': np.append(np.random.normal(180, 20, size=5), np.random.normal(140, 20, size=5)),
                   'Gender': ["Male", "Male", "Male", "Male", "Male",
                              "Female", "Female", "Female", "Female", "Female"]})</code>

Memanggil fungsi dfScatter dengan bingkai data:

<code class="python">fig = dfScatter(df)
fig.savefig('color_coded_scatterplot.png')</code>

Menghasilkan plot serakan dengan titik diwarnakan mengikut jantina:

[Imej plot serakan diwarnakan mengikut jantina]

Ciri lanjutan Seaborn dan fungsi dfScatter tersuai menyediakan pilihan yang fleksibel untuk menambah pengekodan warna pada plot taburan dalam Python, menjadikan visualisasi data lebih bermaklumat dan menarik secara visual.

Atas ialah kandungan terperinci Bagaimana untuk Plot Taburan Kod Warna mengikut Nilai Lajur dalam Python?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python: menyelam mendalam ke dalam kompilasi dan tafsiranPython: menyelam mendalam ke dalam kompilasi dan tafsiranMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation: 1) thepythoninterpretercompilessourcodcecodeintoplatform-independentbytecode.2) thepythonvirtualmachine (PVM) thenexecutesthisbytecode, BalantingeaseOfusoWithperformance.

Adakah Python diterjemahkan atau bahasa yang disusun, dan mengapa ia penting?Adakah Python diterjemahkan atau bahasa yang disusun, dan mengapa ia penting?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandandcompiled.1) it'scompiledtobytecodeforporabilityAcrossplatforms.2) theBytecodeistheninterpreted, membolehkanfordynamictypingandrapiddevelopment, walaupunItmayBeslowerLowerWanLelyCiledlanguages.

Untuk gelung vs semasa gelung di python: perbezaan utama dijelaskanUntuk gelung vs semasa gelung di python: perbezaan utama dijelaskanMay 12, 2025 am 12:08 AM

ForloopsareidealwhenyonesshenumberofiterationsationseSinadvance, whilewhileloopsarebetterforsituationshipheryouneedtoloopuntilaconditionismet.forloopsaremoreeficientablyandable, yang sesuai, manakala whileloopsoffermorecontrolandareusefereficeficeficeficeficient,

Untuk dan semasa gelung: panduan praktikalUntuk dan semasa gelung: panduan praktikalMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance, whilewhileloopsareusedwhenTheiterationsdependonacondition.1) forloopsareidealforiteratingoversequencesLikeListsorArrays.2)

Python: Adakah ia benar -benar ditafsirkan? Membebaskan mitosPython: Adakah ia benar -benar ditafsirkan? Membebaskan mitosMay 12, 2025 am 12:05 AM

Pythonisnotpurelyinterinterpreted; itusesahybridapproachofbytecodecompilationandruntimeinterpretation.1) pythoncompilessourcecodeintobytecode, whoomeSthenexecutedbythepythonvirtualmachine (pvm)

Senarai concatenate python dengan elemen yang samaSenarai concatenate python dengan elemen yang samaMay 11, 2025 am 12:08 AM

ToConcatenatelistsinpythonwiththesameelements, gunakan: 1) operatortokokduplicates, 2) asettoremoveduplicates, OR3) listomprehensionfensionfensionfensionfensiontroloverduplicates, setiapmethodhasdifferentperformanceAdordlications.

Ditafsirkan vs bahasa yang disusun: Tempat PythonDitafsirkan vs bahasa yang disusun: Tempat PythonMay 11, 2025 am 12:07 AM

Pythonisaninterpretedlanguage, menawarkanfuseofuseandflexibilitybutfacingperpormancelimitationsincriticalapplications.1) interpretlanguagesepythonexecuteline-by-line, membolehkanMmediateDebackandrapidprototyping.2)

Untuk dan semasa gelung: Bilakah anda menggunakan setiap python?Untuk dan semasa gelung: Bilakah anda menggunakan setiap python?May 11, 2025 am 12:05 AM

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Nordhold: Sistem Fusion, dijelaskan
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).