Rumah >pembangunan bahagian belakang >Tutorial Python >Streamlit: Tongkat Ajaib untuk Penciptaan Apl ML
Streamlit ialah rangka kerja sumber terbuka yang berkuasa yang membolehkan anda mencipta aplikasi web untuk sains data dan pembelajaran mesin dengan hanya beberapa baris kod Python.
Ia mudah, intuitif dan tidak memerlukan pengalaman bahagian hadapan, menjadikannya alat yang hebat untuk pemula dan pembangun berpengalaman yang ingin menggunakan model pembelajaran mesin dengan cepat.
Dalam blog ini, saya akan membimbing anda melalui proses langkah demi langkah untuk membina apl Streamlit asas dan projek pembelajaran mesin menggunakan set data Iris dengan RandomForestClassifier .
Sebelum kita memasuki projek, mari kita lihat beberapa fungsi Streamlit asas untuk selesa dengan rangka kerja. Anda boleh memasang Streamlit menggunakan arahan berikut:
pip install streamlit
Setelah dipasang, anda boleh memulakan apl Streamlit pertama anda dengan mencipta fail Python, sebut app.py dan jalankannya menggunakan:
streamlit run app.py
Sekarang, mari kita terokai ciri teras Streamlit:
1. Menulis Tajuk dan Memaparkan Teks
import streamlit as st # Writing a title st.title("Hello World") # Display simple text st.write("Displaying a simple text")
2. Memaparkan DataFrames
import pandas as pd # Creating a DataFrame df = pd.DataFrame({ "first column": [1, 2, 3, 4], "second column": [5, 6, 7, 8] }) # Display the DataFrame st.write("Displaying a DataFrame") st.write(df)
3. Menggambarkan Data dengan Carta
import numpy as np # Generating random data chart_data = pd.DataFrame( np.random.randn(20, 4), columns=['a', 'b', 'c', 'd'] ) # Display the line chart st.line_chart(chart_data)
4. Interaksi Pengguna: Input Teks, Peluncur dan Kotak Pilihan
Streamlit mendayakan widget interaktif seperti input teks, peluncur dan kotak pilihan yang mengemas kini secara dinamik berdasarkan input pengguna.
# Text input name = st.text_input("Your Name Is:") if name: st.write(f'Hello, {name}') # Slider age = st.slider("Select Your Age:", 0, 100, 25) if age: st.write(f'Your Age Is: {age}') # Select Box choices = ["Python", "Java", "Javascript"] lang = st.selectbox('Favorite Programming Language', choices) if lang: st.write(f'Favorite Programming Language is {lang}')
5. Muat Naik Fail
Anda boleh membenarkan pengguna memuat naik fail dan memaparkan kandungan mereka secara dinamik dalam apl Streamlit anda:
# File uploader for CSV files file = st.file_uploader('Choose a CSV file', 'csv') if file: data = pd.read_csv(file) st.write(data)
Sekarang anda sudah biasa dengan asas-asasnya, mari kita selami membuat projek pembelajaran mesin. Kami akan menggunakan dataset Iris yang terkenal dan membina klasifikasi mudah model menggunakan RandomForestClassifier daripada scikit-learn.
Struktur Projek :
1. Pasang kebergantungan yang diperlukan
Mula-mula, mari pasang perpustakaan yang diperlukan:
pip install streamlit scikit-learn numpy pandas
2. Import Perpustakaan dan Muatkan Data
Mari import perpustakaan yang diperlukan dan muatkan set data Iris:
import streamlit as st import pandas as pd from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier # Cache data for efficient loading @st.cache_data def load_data(): iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df["species"] = iris.target return df, iris.target_names df, target_name = load_data()
3. Latih Model Pembelajaran Mesin
Setelah kami mempunyai data, kami akan melatih RandomForestClassifier untuk meramalkan spesies bunga berdasarkan cirinya:
# Train RandomForestClassifier model = RandomForestClassifier() model.fit(df.iloc[:, :-1], df["species"])
4. Mencipta Antara Muka Input
Sekarang, kami akan membuat peluncur dalam bar sisi untuk membolehkan pengguna memasukkan ciri untuk membuat ramalan:
# Sidebar for user input st.sidebar.title("Input Features") sepal_length = st.sidebar.slider("Sepal length", float(df['sepal length (cm)'].min()), float(df['sepal length (cm)'].max())) sepal_width = st.sidebar.slider("Sepal width", float(df['sepal width (cm)'].min()), float(df['sepal width (cm)'].max())) petal_length = st.sidebar.slider("Petal length", float(df['petal length (cm)'].min()), float(df['petal length (cm)'].max())) petal_width = st.sidebar.slider("Petal width", float(df['petal width (cm)'].min()), float(df['petal width (cm)'].max()))
5. Meramalkan Spesies
Selepas mendapat input pengguna, kami akan membuat ramalan menggunakan model terlatih:
# Prepare the input data input_data = [[sepal_length, sepal_width, petal_length, petal_width]] # Prediction prediction = model.predict(input_data) prediction_species = target_name[prediction[0]] # Display the prediction st.write("Prediction:") st.write(f'Predicted species is {prediction_species}')
Ini akan kelihatan seperti:
Akhir sekali,Streamlit menjadikannya sangat mudah untuk mencipta dan menggunakan antara muka web pembelajaran mesin dengan usaha yang minimum. ? Hanya dalam beberapa baris kod, kami membina apl interaktif ? yang membolehkan pengguna memasukkan ciri dan meramalkan spesies bunga ? menggunakan model pembelajaran mesin. ??
Selamat pengekodan! ?
Atas ialah kandungan terperinci Streamlit: Tongkat Ajaib untuk Penciptaan Apl ML. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!