Rumah >hujung hadapan web >tutorial js >Membuka Kunci Permata Tersembunyi JavaScript: Ciri Kurang Digunakan untuk Meningkatkan Kualiti dan Prestasi Kod

Membuka Kunci Permata Tersembunyi JavaScript: Ciri Kurang Digunakan untuk Meningkatkan Kualiti dan Prestasi Kod

Patricia Arquette
Patricia Arquetteasal
2024-10-03 14:25:31712semak imbas

Unlocking JavaScript

Dalam landskap pembangunan web yang sentiasa berkembang, JavaScript kekal sebagai teknologi asas yang menjanakan banyak aplikasi web berskala besar. Walaupun ramai pembangun mahir dalam ciri asas bahasa, JavaScript menyimpan khazanah fungsi yang kurang digunakan yang boleh meningkatkan kualiti dan prestasi kod dengan ketara. Memanfaatkan ciri yang kurang dikenali ini bukan sahaja menyelaraskan proses pembangunan tetapi juga memastikan aplikasi adalah teguh, boleh diselenggara dan cekap. Artikel ini menyelidiki beberapa ciri JavaScript yang paling diabaikan, menjelaskan cara ia boleh dimanfaatkan untuk meningkatkan projek web berskala besar.

Jadual Kandungan

  1. Perantaian Pilihan (?.)
  2. Penyatuan Batal (??)
  3. Memusnahkan dengan Nilai Lalai
  4. Modul ES6
  5. Janji.semua Selesai
  6. Penjana dan Iterator
  7. Objek Proksi
  8. Import dinamik()
  9. Medan Kelas Persendirian
  10. Async Iterator
  11. Kesimpulan
  12. Petikan

Rantaian Pilihan (?.)

Apakah Rantaian Pilihan?

Perantaian Pilihan ialah ciri sintaksis yang diperkenalkan dalam ECMAScript 2020 yang membolehkan pembangun mengakses sifat objek bersarang dalam dengan selamat tanpa perlu menyemak secara eksplisit kewujudan setiap rujukan dalam rantaian. Dengan menggunakan ?. operator, anda boleh menghalang ralat masa jalan yang berlaku apabila cuba mengakses sifat undefined atau null.

Mengapa Ia Kurang Digunakan

Walaupun utilitinya, ramai pembangun sama ada tidak mengetahui tentang Rangkaian Pilihan atau teragak-agak untuk menerima pakainya kerana kebimbangan tentang keserasian penyemak imbas atau tidak biasa dengan sintaks.

Meningkatkan Kualiti dan Prestasi Kod

  • Kod Pembersih: Menghapuskan keperluan untuk pernyataan berulang jika atau operator logik DAN (&&), menghasilkan kod yang lebih mudah dibaca dan diselenggara.
  // Without Optional Chaining
  if (user && user.address && user.address.street) {
    console.log(user.address.street);
  }

  // With Optional Chaining
  console.log(user?.address?.street);
  • Ralat Dikurangkan: Meminimumkan risiko menghadapi pengecualian TypeError, meningkatkan kestabilan aplikasi.

  • Peningkatan Prestasi: Dengan mengurangkan bilangan semakan bersyarat, ia boleh meningkatkan sedikit kelajuan pelaksanaan, terutamanya dalam aplikasi berskala besar dengan struktur data yang luas.

Kes Penggunaan Praktikal

  • Respons API: Mengendalikan medan pilihan dalam respons JSON daripada API.

  • Objek Konfigurasi: Mengakses tetapan konfigurasi bersarang di mana pilihan tertentu mungkin pilihan.

  • Struktur Data Dinamik: Mengurus objek yang mungkin mempunyai struktur yang berbeza-beza berdasarkan interaksi pengguna atau keadaan aplikasi.

Petua Pelaksanaan

  • Nilai Fallback: Gabungkan Rantaian Pilihan dengan pengendali Nullish Coalescing (??) untuk memberikan nilai lalai apabila sifat tidak ditentukan atau batal.
  const street = user?.address?.street ?? 'No street provided';
  • Panggilan Fungsi: Gunakan Rantaian Pilihan untuk menggunakan fungsi yang mungkin tidak ditentukan dengan selamat.
  user?.getProfile?.();

Penyatuan Batal (??)

Apakah Nullish Coalescing?

Nullish Coalescing ialah satu lagi ciri daripada ECMAScript 2020 yang membenarkan pembangun menetapkan nilai lalai kepada pembolehubah hanya apabila ia adalah batal atau tidak ditentukan, tidak seperti operator logik OR (||), yang memberikan nilai lalai untuk sebarang nilai palsu (cth., 0, '', palsu).

Mengapa Ia Kurang Digunakan

Ramai pembangun lalai menggunakan operator OR logik untuk menetapkan nilai lalai tanpa mengambil kira implikasinya yang lebih luas pada jenis data yang berbeza.

Meningkatkan Kualiti dan Prestasi Kod

  • Lalai Tepat: Memastikan bahawa hanya null atau undefined mencetuskan nilai lalai, mengekalkan nilai palsu yang sah seperti 0 atau palsu.
  // Using ||
  const port = process.env.PORT || 3000; // Incorrect if PORT is 0

  // Using ??
  const port = process.env.PORT ?? 3000; // Correct
  • Kebolehbacaan yang Dipertingkat: Menjelaskan niat dengan mengendalikan secara eksplisit kes null atau undefined sahaja, menjadikan kod lebih mudah difahami dan diselenggara.

  • Kecekapan Prestasi: Mengurangkan penilaian dan tugasan yang tidak perlu, terutamanya dalam aplikasi berskala besar dengan permulaan pembolehubah yang meluas.

Kes Penggunaan Praktikal

  • Lalai Konfigurasi: Menetapkan nilai konfigurasi lalai tanpa mengatasi input palsu yang sah.

  • Pengendalian Borang: Menetapkan nilai borang lalai sambil membenarkan input pengguna yang sah seperti 0.

  • Parameter Fungsi: Menyediakan nilai parameter lalai dalam pengisytiharan fungsi.

Implementation Tips

  • Combining with Optional Chaining: Use ?? alongside ?. for more robust data handling.
  const street = user?.address?.street ?? 'No street provided';
  • Fallback Chains: Chain multiple ?? operators to provide a hierarchy of default values.
  const theme = userSettings.theme ?? defaultSettings.theme ?? 'light';

Destructuring with Default Values

What is Destructuring with Default Values?

Destructuring is a syntax that allows extracting values from arrays or properties from objects into distinct variables. When combined with default values, it provides a succinct way to handle cases where certain properties or array elements may be missing.

Why It’s Underutilized

Developers often overlook the power of destructuring with default values, favoring more verbose methods of extracting and assigning variables.

Enhancing Code Quality and Performance

  • Concise Syntax: Reduces boilerplate code by enabling the extraction and default assignment in a single statement.
  // Without Destructuring
  const name = user.name !== undefined ? user.name : 'Guest';
  const age = user.age !== undefined ? user.age : 18;

  // With Destructuring
  const { name = 'Guest', age = 18 } = user;
  • Improved Maintainability: Simplifies variable declarations, making the codebase easier to manage and refactor.

  • Performance Benefits: Minimizes the number of operations required for variable assignments, which can contribute to marginal performance improvements in large-scale applications.

Practical Use Cases

  • Function Parameters: Extracting parameters with defaults directly in function signatures.
  function createUser({ name = 'Guest', age = 18 } = {}) {
    // Function body
  }
  • API Responses: Handling optional fields in API responses seamlessly.

  • Component Props: In frameworks like React, setting default props using destructuring.

Implementation Tips

  • Nested Destructuring: Handle deeply nested objects with default values to prevent errors.
  const { address: { street = 'No street' } = {} } = user;
  • Combining with Rest Operator: Extract specific properties while collecting the rest into another object.
  const { name = 'Guest', ...rest } = user;

ES6 Modules

What are ES6 Modules?

ES6 Modules introduce a standardized module system to JavaScript, allowing developers to import and export code between different files and scopes. This feature enhances modularity and reusability, facilitating the development of large-scale applications.

Why They’re Underutilized

Legacy projects and certain development environments may still rely on older module systems like CommonJS, leading to hesitancy in adopting ES6 Modules.

Enhancing Code Quality and Performance

  • Modularity: Encourages a modular codebase, making it easier to manage, test, and maintain large applications.

  • Scope Management: Prevents global namespace pollution by encapsulating code within modules.

  • Tree Shaking: Enables modern bundlers to perform tree shaking, eliminating unused code and optimizing bundle sizes for better performance.

  // Exporting
  export const add = (a, b) => a + b;
  export const subtract = (a, b) => a - b;

  // Importing
  import { add, subtract } from './math.js';
  • Asynchronous Loading: Supports dynamic imports, allowing modules to be loaded on demand, which can improve initial load times.

Practical Use Cases

  • Component-Based Architectures: In frameworks like React or Vue, ES6 Modules facilitate the creation and management of reusable components.

  • Utility Libraries: Organizing utility functions and helpers into separate modules for better reusability.

  • Service Layers: Structuring service interactions, such as API calls, into distinct modules.

Implementation Tips

  • Consistent File Extensions: Ensure that module files use appropriate extensions (.mjs for ES6 Modules) if required by the environment.

  • Default Exports: Use default exports for modules that export a single functionality, enhancing clarity.

  // Default Export
  export default function fetchData() { /* ... */ }

  // Importing Default Export
  import fetchData from './fetchData.js';
  • Avoid Circular Dependencies: Structure modules to prevent circular dependencies, which can lead to runtime errors and unpredictable behavior.

Promise.allSettled

What is Promise.allSettled?

Introduced in ECMAScript 2020, Promise.allSettled is a method that returns a promise which resolves after all of the given promises have either fulfilled or rejected. Unlike Promise.all, it does not short-circuit on the first rejection, providing a comprehensive view of all promise outcomes.

Why It’s Underutilized

Developers often default to Promise.all for handling multiple promises, not fully realizing the benefits of capturing all results regardless of individual promise failures.

Enhancing Code Quality and Performance

  • Comprehensive Error Handling: Allows handling of all promise outcomes, facilitating more robust error management in complex applications.
  const results = await Promise.allSettled([promise1, promise2, promise3]);

  results.forEach((result) => {
    if (result.status === 'fulfilled') {
      console.log(result.value);
    } else {
      console.error(result.reason);
    }
  });
  • Improved Resilience: Ensures that one failing promise does not prevent the execution of other asynchronous operations, enhancing application reliability.

  • Performance Optimization: Enables parallel execution of independent asynchronous tasks without being halted by individual failures.

Practical Use Cases

  • Batch API Requests: Handling multiple API calls simultaneously and processing each response, regardless of individual failures.

  • Resource Loading: Loading multiple resources (e.g., images, scripts) where some may fail without affecting the overall application.

  • Data Processing: Executing multiple data processing tasks in parallel and handling their outcomes collectively.

Implementation Tips

  • Result Analysis: Utilize the status and value or reason properties to determine the outcome of each promise.
  Promise.allSettled([fetchData1(), fetchData2()])
    .then((results) => {
      results.forEach((result) => {
        if (result.status === 'fulfilled') {
          // Handle success
        } else {
          // Handle failure
        }
      });
    });
  • Combining with Other Methods: Use in conjunction with Promise.race or Promise.any for more nuanced asynchronous control flows.

  • Error Logging: Implement centralized logging for rejected promises to streamline debugging and monitoring.

Generators and Iterators

What are Generators and Iterators?

Generators are special functions that can pause execution and resume at a later point, allowing the creation of iterators with ease. Iterators provide a standardized way to traverse through data structures, offering greater control over the iteration process.

Why They’re Underutilized

The complexity of generators and iterators can be intimidating, leading developers to opt for simpler iteration methods like for loops or array methods (map, forEach).

Enhancing Code Quality and Performance

  • Lazy Evaluation: Generators enable the creation of iterators that generate values on the fly, which is particularly beneficial for handling large datasets without significant memory overhead.
  function* idGenerator() {
    let id = 1;
    while (true) {
      yield id++;
    }
  }

  const gen = idGenerator();
  console.log(gen.next().value); // 1
  console.log(gen.next().value); // 2
  • Asynchronous Programming: Combined with async/await, generators can manage complex asynchronous workflows more elegantly.

  • Custom Iteration Protocols: Allow the creation of custom data structures that can be iterated over in specific ways, enhancing flexibility and control.

  • Improved Performance: By generating values on demand, generators can reduce the initial load time and memory consumption, especially in large-scale applications dealing with extensive data processing.

Practical Use Cases

  • Data Streaming: Processing large streams of data, such as reading files or handling network data, without loading the entire dataset into memory.

  • State Machines: Implementing state machines where the application needs to manage various states and transitions in a controlled manner.

  • Infinite Sequences: Creating sequences that theoretically never end, such as infinite counters or unique identifier generators.

Implementation Tips

  • Error Handling: Incorporate try...catch blocks within generators to manage exceptions gracefully during iteration.
  function* safeGenerator() {
    try {
      yield 1;
      yield 2;
      throw new Error('An error occurred');
    } catch (e) {
      console.error(e);
    }
  }
  • Delegating Generators: Use the yield* syntax to delegate to another generator, promoting code reuse and modularity.
  function* generatorA() {
    yield 1;
    yield 2;
  }

  function* generatorB() {
    yield* generatorA();
    yield 3;
  }
  • Combining with Iterables: Integrate generators with iterable protocols to enhance compatibility with various JavaScript constructs and libraries.

Proxy Objects

What are Proxy Objects?

Proxies are a powerful feature introduced in ECMAScript 2015 that allow developers to define custom behavior for fundamental operations on objects, such as property access, assignment, enumeration, and function invocation. By creating a proxy, you can intercept and redefine these operations, enabling advanced patterns like data validation, logging, and performance monitoring.

Why They’re Underutilized

The versatility and complexity of proxies can be daunting, leading to underutilization despite their immense potential for enhancing application behavior.

Enhancing Code Quality and Performance

  • Data Validation: Implement custom validation logic to ensure that objects maintain consistent and valid states.
  const user = {
    name: 'John Doe',
    age: 30
  };

  const validator = {
    set(target, property, value) {
      if (property === 'age' && typeof value !== 'number') {
        throw new TypeError('Age must be a number');
      }
      target[property] = value;
      return true;
    }
  };

  const proxyUser = new Proxy(user, validator);
  proxyUser.age = 'thirty'; // Throws TypeError
  • Logging and Debugging: Automatically log property accesses and mutations, aiding in debugging and monitoring application behavior.
  const handler = {
    get(target, property) {
      console.log(`Property ${property} accessed`);
      return target[property];
    },
    set(target, property, value) {
      console.log(`Property ${property} set to ${value}`);
      target[property] = value;
      return true;
    }
  };

  const proxy = new Proxy({}, handler);
  proxy.foo = 'bar'; // Logs: Property foo set to bar
  console.log(proxy.foo); // Logs: Property foo accessed
  • Performance Optimization: Create lazy-loading mechanisms where object properties are loaded only when accessed, reducing initial load times and memory usage.
  const lazyLoader = {
    get(target, property) {
      if (!(property in target)) {
        target[property] = expensiveComputation(property);
      }
      return target[property];
    }
  };

  const obj = new Proxy({}, lazyLoader);
  console.log(obj.data); // Triggers expensiveComputation
  • Security Enhancements: Restrict access to sensitive object properties or prevent unauthorized modifications, bolstering application security.

Practical Use Cases

  • API Proxies: Create intermediaries for API calls, handling request modifications and response parsing seamlessly.

  • State Management: Integrate with state management libraries to track and manage application state changes effectively.

  • Virtualization: Simulate or enhance objects without altering their original structures, facilitating advanced patterns like object virtualization.

Implementation Tips

  • Avoid Overuse: While proxies are powerful, excessive use can lead to code that is difficult to understand and debug. Use them judiciously for specific scenarios.

  • Performance Considerations: Proxies introduce a slight performance overhead. Benchmark critical paths to ensure that proxies do not become bottlenecks.

  • Combining with Reflect API: Utilize the Reflect API to perform default operations within proxy handlers, ensuring that proxied objects behave as expected.

  const handler = {
    get(target, property, receiver) {
      return Reflect.get(target, property, receiver);
    },
    set(target, property, value, receiver) {
      return Reflect.set(target, property, value, receiver);
    }
  };
  • Proxy Revocation: Use Proxy.revocable when you need to revoke access to a proxy at runtime, enhancing control over object interactions.
  const { proxy, revoke } = Proxy.revocable({}, handler);
  revoke(); // Invalidates the proxy

Dynamic import()

What is Dynamic import()?

Dynamic import() is a feature that allows modules to be loaded asynchronously at runtime, rather than being statically imported at the beginning of a script. This capability enhances flexibility in module loading strategies, enabling on-demand loading of code as needed.

Why It’s Underutilized

Many developers stick to static imports for simplicity and are unaware of the performance and organizational benefits that dynamic imports can offer.

Enhancing Code Quality and Performance

  • Code Splitting: Break down large codebases into smaller chunks, loading modules only when they are required. This reduces initial load times and improves performance, especially for large-scale applications.
  button.addEventListener('click', async () => {
    const { handleClick } = await import('./handleClick.js');
    handleClick();
  });
  • Conditional Loading: Load modules based on specific conditions, such as user roles or feature flags, optimizing resource utilization.
  if (user.isAdmin) {
    const adminModule = await import('./adminModule.js');
    adminModule.init();
  }
  • Lazy Loading: Defer loading of non-critical modules until they are needed, enhancing the perceived performance of the application.
  const loadChart = () => import('./chartModule.js').then(module => module.renderChart());
  • Enhanced Maintainability: Organize code more effectively by separating concerns and managing dependencies dynamically, making the codebase easier to navigate and maintain.

Practical Use Cases

  • Single Page Applications (SPAs): Implement route-based code splitting to load page-specific modules only when a user navigates to a particular route.

  • Feature Toggles: Dynamically load features based on user preferences or experimental flags without redeploying the entire application.

  • Third-Party Libraries: Load heavy third-party libraries only when their functionalities are invoked, reducing the overall bundle size.

Implementation Tips

  • Error Handling: Incorporate robust error handling when using dynamic imports to manage scenarios where module loading fails.
  import('./module.js')
    .then(module => {
      module.doSomething();
    })
    .catch(error => {
      console.error('Module failed to load:', error);
    });
  • Caching Strategies: Utilize browser caching mechanisms to ensure that dynamically imported modules are efficiently cached and reused.

  • Webpack and Bundlers: Configure your bundler (e.g., Webpack) to handle dynamic imports effectively, leveraging features like code splitting and chunk naming.

  import(/* webpackChunkName: "my-chunk" */ './module.js')
    .then(module => {
      module.doSomething();
    });
  • Async/Await Syntax: Prefer using async/await for cleaner and more readable asynchronous code when dealing with dynamic imports.
  async function loadModule() {
    try {
      const module = await import('./module.js');
      module.doSomething();
    } catch (error) {
      console.error('Failed to load module:', error);
    }
  }

Private Class Fields

What are Private Class Fields?

Private Class Fields are a feature that allows developers to define class properties that are inaccessible from outside the class. By prefixing property names with #, these fields are strictly encapsulated, enhancing data privacy and integrity within object-oriented JavaScript code.

Why They’re Underutilized

Traditional JavaScript classes lack native support for private properties, leading developers to rely on naming conventions or closures, which can be less secure and harder to manage.

Enhancing Code Quality and Performance

  • Encapsulation: Ensures that internal class states are protected from unintended external modifications, promoting better data integrity and reducing bugs.
  class User {
    #password;

    constructor(name, password) {
      this.name = name;
      this.#password = password;
    }

    authenticate(input) {
      return input === this.#password;
    }
  }

  const user = new User('Alice', 'secret');
  console.log(user.#password); // SyntaxError
  • Improved Maintainability: Clearly distinguishes between public and private members, making the codebase easier to understand and maintain.

  • Security Enhancements: Prevents external code from accessing or modifying sensitive properties, enhancing the overall security of the application.

  • Performance Benefits: Private fields can lead to optimizations in JavaScript engines, potentially improving runtime performance.

Practical Use Cases

  • Data Models: Protect sensitive information within data models, such as user credentials or financial data.

  • Component State: In frameworks like React, manage component state more securely without exposing internal states.

  • Utility Classes: Encapsulate helper methods and properties that should not be accessible from outside the class.

Implementation Tips

  • Consistent Naming Conventions: Use the # prefix consistently to denote private fields, maintaining clarity and uniformity across the codebase.

  • Accessors: Provide getter and setter methods to interact with private fields when necessary, controlling how external code can read or modify them.

  class BankAccount {
    #balance;

    constructor(initialBalance) {
      this.#balance = initialBalance;
    }

    get balance() {
      return this.#balance;
    }

    deposit(amount) {
      if (amount > 0) {
        this.#balance += amount;
      }
    }
  }
  • Avoid Reflection: Private fields are not accessible via reflection methods like Object.getOwnPropertyNames(), ensuring their true privacy. Design your classes with this limitation in mind.

  • Browser Support: Ensure that the target environments support private class fields or use transpilers like Babel for compatibility.

Async Iterators

What are Async Iterators?

Async Iterators extend the iterator protocol to handle asynchronous operations, allowing developers to iterate over data sources that produce values asynchronously, such as streams, API responses, or real-time data feeds. Introduced in ECMAScript 2018, Async Iterators provide a seamless way to handle asynchronous data flows within loops.

Why They’re Underutilized

The complexity of asynchronous iteration and the relative novelty of Async Iterators have resulted in their limited adoption compared to traditional synchronous iterators.

Enhancing Code Quality and Performance

  • Simplified Asynchronous Loops: Allows the use of for await...of loops, making asynchronous iteration more readable and manageable.
  async function fetchData(generator) {
    for await (const data of generator) {
      console.log(data);
    }
  }
  • Streamlined Data Processing: Facilitates the processing of data streams without the need for complex callback chains or nested promises.

  • Memory Efficiency: Enables handling of large or infinite data streams by processing data incrementally, reducing memory consumption.

  • Improved Error Handling: Integrates seamlessly with try...catch blocks within asynchronous loops, enhancing error management.

Practical Use Cases

  • Data Streaming: Iterating over data streams, such as reading files or receiving network data in chunks.

  • Real-Time Applications: Handling real-time data feeds in applications like chat systems, live dashboards, or gaming.

  • API Pagination: Iterating through paginated API responses without blocking the main thread.

Implementation Tips

  • Defining Async Iterators: Implement the [Symbol.asyncIterator] method in objects to make them compatible with for await...of loops.
  const asyncIterable = {
    async *[Symbol.asyncIterator]() {
      for (let i = 0; i < 5; i++) {
        yield new Promise(resolve => setTimeout(() => resolve(i), 1000));
      }
    }
  };

  (async () => {
    for await (const num of asyncIterable) {
      console.log(num); // Logs numbers 0 to 4 with a 1-second interval
    }
  })();
  • Combining with Generators: Utilize generators to create complex asynchronous iteration patterns, enhancing code modularity.

  • Error Propagation: Ensure that errors within asynchronous iterators are properly propagated and handled within the consuming loops.

  async *faultyGenerator() {
    yield 1;
    throw new Error('Something went wrong');
  }

  (async () => {
    try {
      for await (const num of faultyGenerator()) {
        console.log(num);
      }
    } catch (error) {
      console.error(error.message); // Outputs: Something went wrong
    }
  })();
  • Performance Considerations: While Async Iterators provide numerous benefits, be mindful of their impact on performance, especially when dealing with high-frequency data streams. Optimize generator functions to handle data efficiently.

Conclusion

JavaScript's rich feature set extends far beyond the basics, offering a plethora of tools that can significantly enhance the development of large-scale web applications. By embracing underutilized features like Optional Chaining, Nullish Coalescing, Destructuring with Default Values, ES6 Modules, Promise.allSettled, Generators and Iterators, Proxy Objects, Dynamic import(), Private Class Fields, and Async Iterators, developers can write more efficient, maintainable, and robust code. These features not only improve code quality and performance but also pave the way for more innovative and scalable web solutions. As the JavaScript ecosystem continues to evolve, staying abreast of these hidden gems will empower developers to harness the full potential of the language, driving forward the next generation of web applications.

Excerpt

Discover JavaScript's hidden features that enhance large-scale web apps. Learn how underutilized functionalities like Optional Chaining and Async Iterators boost code quality and performance.

Atas ialah kandungan terperinci Membuka Kunci Permata Tersembunyi JavaScript: Ciri Kurang Digunakan untuk Meningkatkan Kualiti dan Prestasi Kod. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn