


Sekarang saya sedang mengusahakan projek di mana REST API dibina menggunakan AWS lambdas sebagai pengendali permintaan. Keseluruhannya menggunakan AWS SAM untuk mentakrifkan lambda, lapisan dan menyambungkannya ke Api Gateway dalam fail template.yaml yang bagus.
Masalahnya
Menguji API ini secara setempat tidak semudah dengan rangka kerja lain. Walaupun AWS menyediakan arahan setempat yang sama untuk membina imej Docker yang mengehoskan lambdas (yang lebih baik meniru persekitaran Lambda), saya mendapati pendekatan ini terlalu berat untuk lelaran pantas semasa pembangunan.
Penyelesaian
Saya mahukan cara untuk:
- Uji logik perniagaan dan pengesahan data saya dengan cepat
- Sediakan pelayan tempatan untuk diuji oleh pembangun bahagian hadapan
- Elakkan overhed membina semula imej Docker untuk setiap perubahan
Jadi, saya mencipta skrip untuk memenuhi keperluan ini. ?♂️
TL;DR: Lihat server_local.py dalam repositori GitHub ini.
Faedah Utama
- Persediaan Pantas: Memusingkan pelayan Flask setempat yang memetakan laluan API Gateway anda ke laluan Flask.
- Pelaksanaan Terus: Mencetuskan fungsi Python (pengendali Lambda) secara langsung, tanpa overhed Docker.
- Muat Semula Panas: Perubahan ditunjukkan serta-merta, memendekkan gelung maklum balas pembangunan.
Contoh ini dibina pada projek "Hello World" daripada sam init, dengan server_local.py dan keperluannya ditambah untuk membolehkan pembangunan setempat.
Membaca Templat SAM
Apa yang saya lakukan di sini ialah saya membaca templat.yaml dahulu kerana terdapat takrif semasa infrastruktur saya dan semua lambda.
Semua kod yang kita perlukan untuk mencipta definisi dict adalah ini. Untuk mengendalikan fungsi khusus untuk templat SAM, saya telah menambah beberapa pembina pada CloudFormationLoader. Ia kini boleh menyokong Ref sebagai rujukan kepada objek lain, Sub sebagai kaedah untuk menggantikan dan GetAtt untuk mendapatkan atribut. Saya rasa kita boleh menambah lebih logik di sini tetapi sekarang ini sudah memadai untuk menjadikannya berfungsi.
import os from typing import Any, Dict import yaml class CloudFormationLoader(yaml.SafeLoader): def __init__(self, stream): self._root = os.path.split(stream.name)[0] # type: ignore super(CloudFormationLoader, self).__init__(stream) def include(self, node): filename = os.path.join(self._root, self.construct_scalar(node)) # type: ignore with open(filename, "r") as f: return yaml.load(f, CloudFormationLoader) def construct_getatt(loader, node): if isinstance(node, yaml.ScalarNode): return {"Fn::GetAtt": loader.construct_scalar(node).split(".")} elif isinstance(node, yaml.SequenceNode): return {"Fn::GetAtt": loader.construct_sequence(node)} else: raise yaml.constructor.ConstructorError( None, None, f"Unexpected node type for !GetAtt: {type(node)}", node.start_mark ) CloudFormationLoader.add_constructor( "!Ref", lambda loader, node: {"Ref": loader.construct_scalar(node)} # type: ignore ) CloudFormationLoader.add_constructor( "!Sub", lambda loader, node: {"Fn::Sub": loader.construct_scalar(node)} # type: ignore ) CloudFormationLoader.add_constructor("!GetAtt", construct_getatt) def load_template() -> Dict[str, Any]: with open("template.yaml", "r") as file: return yaml.load(file, Loader=CloudFormationLoader)
Dan ini menghasilkan json seperti ini:
{ "AWSTemplateFormatVersion":"2010-09-09", "Transform":"AWS::Serverless-2016-10-31", "Description":"sam-app\nSample SAM Template for sam-app\n", "Globals":{ "Function":{ "Timeout":3, "MemorySize":128, "LoggingConfig":{ "LogFormat":"JSON" } } }, "Resources":{ "HelloWorldFunction":{ "Type":"AWS::Serverless::Function", "Properties":{ "CodeUri":"hello_world/", "Handler":"app.lambda_handler", "Runtime":"python3.9", "Architectures":[ "x86_64" ], "Events":{ "HelloWorld":{ "Type":"Api", "Properties":{ "Path":"/hello", "Method":"get" } } } } } }, "Outputs":{ "HelloWorldApi":{ "Description":"API Gateway endpoint URL for Prod stage for Hello World function", "Value":{ "Fn::Sub":"https://${ServerlessRestApi}.execute-api.${AWS::Region}.amazonaws.com/Prod/hello/" } }, "HelloWorldFunction":{ "Description":"Hello World Lambda Function ARN", "Value":{ "Fn::GetAtt":[ "HelloWorldFunction", "Arn" ] } }, "HelloWorldFunctionIamRole":{ "Description":"Implicit IAM Role created for Hello World function", "Value":{ "Fn::GetAtt":[ "HelloWorldFunctionRole", "Arn" ] } } } }
Mengendalikan Lapisan
Melalui itu adalah mudah untuk mencipta laluan Flask secara dinamik untuk setiap titik akhir. Tetapi sebelum itu sesuatu yang lebih.
Dalam apl sam init helloworld tiada lapisan yang ditentukan. Tetapi saya mempunyai masalah ini dalam projek sebenar saya. Untuk menjadikannya berfungsi dengan betul, saya telah menambahkan fungsi yang membaca definisi lapisan dan menambahkannya pada sys.path yang import python boleh berfungsi dengan betul. Semak ini:
def add_layers_to_path(template: Dict[str, Any]): """Add layers to path. Reads the template and adds the layers to the path for easier imports.""" resources = template.get("Resources", {}) for _, resource in resources.items(): if resource.get("Type") == "AWS::Serverless::LayerVersion": layer_path = resource.get("Properties", {}).get("ContentUri") if layer_path: full_path = os.path.join(os.getcwd(), layer_path) if full_path not in sys.path: sys.path.append(full_path)
Mencipta Laluan Flask
Dalam kita perlu mengulangi seluruh sumber dan mencari semua fungsi. Berdasarkan itu, saya mencipta keperluan data untuk laluan kelalang.
def export_endpoints(template: Dict[str, Any]) -> List[Dict[str, str]]: endpoints = [] resources = template.get("Resources", {}) for resource_name, resource in resources.items(): if resource.get("Type") == "AWS::Serverless::Function": properties = resource.get("Properties", {}) events = properties.get("Events", {}) for event_name, event in events.items(): if event.get("Type") == "Api": api_props = event.get("Properties", {}) path = api_props.get("Path") method = api_props.get("Method") handler = properties.get("Handler") code_uri = properties.get("CodeUri") if path and method and handler and code_uri: endpoints.append( { "path": path, "method": method, "handler": handler, "code_uri": code_uri, "resource_name": resource_name, } ) return endpoints
Kemudian langkah seterusnya ialah menggunakannya dan menyediakan laluan untuk setiap satu.
def setup_routes(template: Dict[str, Any]): endpoints = export_endpoints(template) for endpoint in endpoints: setup_route( endpoint["path"], endpoint["method"], endpoint["handler"], endpoint["code_uri"], endpoint["resource_name"], ) def setup_route(path: str, method: str, handler: str, code_uri: str, resource_name: str): module_name, function_name = handler.rsplit(".", 1) module_path = os.path.join(code_uri, f"{module_name}.py") spec = importlib.util.spec_from_file_location(module_name, module_path) if spec is None or spec.loader is None: raise Exception(f"Module {module_name} not found in {code_uri}") module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) handler_function = getattr(module, function_name) path = path.replace("{", "") print(f"Setting up route for [{method}] {path} with handler {resource_name}.") # Create a unique route handler for each Lambda function def create_route_handler(handler_func): def route_handler(*args, **kwargs): event = { "httpMethod": request.method, "path": request.path, "queryStringParameters": request.args.to_dict(), "headers": dict(request.headers), "body": request.get_data(as_text=True), "pathParameters": kwargs, } context = LambdaContext(resource_name) response = handler_func(event, context) try: api_response = APIResponse(**response) headers = response.get("headers", {}) return Response( api_response.body, status=api_response.statusCode, headers=headers, mimetype="application/json", ) except ValidationError as e: return jsonify({"error": "Invalid response format", "details": e.errors()}), 500 return route_handler # Use a unique endpoint name for each route endpoint_name = f"{resource_name}_{method}_{path.replace('/', '_')}" app.add_url_rule( path, endpoint=endpoint_name, view_func=create_route_handler(handler_function), methods=[method.upper(), "OPTIONS"], )
Dan anda boleh memulakan pelayan anda dengan
if __name__ == "__main__": template = load_template() add_layers_to_path(template) setup_routes(template) app.run(debug=True, port=3000)
Itu sahaja. Keseluruhan kod tersedia di github https://github.com/JakubSzwajka/aws-sam-lambda-local-server-python. Beritahu saya jika anda menjumpai mana-mana bekas sudut dengan lapisan dan lain-lain. Itu boleh dipertingkatkan atau anda fikir ia berbaloi untuk menambah sesuatu yang lebih pada ini. Saya dapati ia sangat membantu.
Isu Berpotensi
Ringkasnya, ini berfungsi pada persekitaran tempatan anda. Perlu diingat bahawa lambdas mempunyai beberapa had memori yang digunakan dan cpu. Pada akhirnya adalah baik untuk mengujinya dalam persekitaran sebenar. Pendekatan ini harus digunakan untuk mempercepatkan proses pembangunan.
Jika anda melaksanakan perkara ini dalam projek anda, sila kongsikan pandangan anda. Adakah ia berfungsi dengan baik untuk anda? Sebarang cabaran yang anda hadapi? Maklum balas anda membantu memperbaik penyelesaian ini untuk semua orang.
Ingin Tahu Lebih Lanjut?
Nantikan lebih banyak cerapan dan tutorial! Lawati Blog Saya ?
Atas ialah kandungan terperinci Pelayan Pembangunan Tempatan untuk Projek Lambda AWS SAM. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

Python sesuai untuk pembangunan pesat dan pemprosesan data, manakala C sesuai untuk prestasi tinggi dan kawalan asas. 1) Python mudah digunakan, dengan sintaks ringkas, dan sesuai untuk sains data dan pembangunan web. 2) C mempunyai prestasi tinggi dan kawalan yang tepat, dan sering digunakan dalam pengaturcaraan permainan dan sistem.

Masa yang diperlukan untuk belajar python berbeza dari orang ke orang, terutamanya dipengaruhi oleh pengalaman pengaturcaraan sebelumnya, motivasi pembelajaran, sumber pembelajaran dan kaedah, dan irama pembelajaran. Tetapkan matlamat pembelajaran yang realistik dan pelajari terbaik melalui projek praktikal.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

VSCode Windows 64-bit Muat Turun
Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna