cari
Rumahpembangunan bahagian belakangTutorial PythonPolar vs. Panda Era Baru Bingkai Data dalam Python ?

Polars vs. Pandas A New Era of Dataframes in Python ?

Polars vs. Panda: Apakah Perbezaannya?

Jika anda sentiasa mengikuti perkembangan Python baru-baru ini, anda mungkin pernah mendengar tentang Polars, sebuah perpustakaan baharu untuk bekerja dengan data. Walaupun pandas telah menjadi pustaka kegemaran sejak sekian lama, Polars membuat gelombang, terutamanya untuk mengendalikan set data yang besar. Jadi, apakah masalah besar dengan Polars? Bagaimanakah ia berbeza dengan panda? Mari pecahkannya.


Apakah Polars?

Polars ialah perpustakaan sumber terbuka percuma terbina dalam Rust (bahasa pengaturcaraan yang pantas dan moden). Ia direka untuk membantu pembangun Python mengendalikan data dengan cara yang lebih pantas dan cekap. Anggap ia sebagai alternatif kepada panda yang bersinar apabila anda bekerja dengan set data yang sangat besar yang mungkin bergelut dengan panda.


Mengapa Polar Dicipta?

Panda telah wujud selama bertahun-tahun, dan ramai orang masih suka menggunakannya. Tetapi apabila data semakin besar dan lebih kompleks, panda telah mula menunjukkan beberapa kelemahan. Ritchie Vink, pencipta Polars, menyedari isu ini dan memutuskan untuk mencipta sesuatu yang lebih pantas dan cekap. Malah Wes McKinney, pencipta panda, mengakui dalam catatan blog bertajuk "10 Perkara yang Saya Benci Tentang panda" bahawa panda boleh menggunakan sedikit peningkatan, terutamanya dengan set data yang besar.

Di situlah Polar hadir, ia direka bentuk dengan pantas dan cekap ingatan, dua perkara yang dihadapi oleh panda semasa mengendalikan data besar.


Perbezaan Utama: Polar vs. Panda

1. Kelajuan

Polars adalah sangat laju. Malah, beberapa penanda aras menunjukkan bahawa Polar boleh sehingga 5–10 kali lebih pantas daripada panda apabila melakukan operasi biasa, seperti menapis atau mengumpulkan data. Perbezaan kelajuan ini amat ketara apabila anda bekerja dengan set data yang besar.

2. Penggunaan Memori

Polar jauh lebih cekap apabila ia melibatkan ingatan. Ia menggunakan kira-kira 5 hingga 10 kali kurang memori daripada panda, yang bermaksud anda boleh bekerja dengan set data yang lebih besar tanpa menghadapi masalah ingatan.

3. Pelaksanaan Malas

Polars menggunakan sesuatu yang dipanggil pelaksanaan malas, yang bermaksud ia tidak segera menjalankan setiap operasi semasa anda menulisnya. Sebaliknya, ia menunggu sehingga anda telah menulis satu siri operasi, kemudian menjalankan semuanya sekali gus. Ini membantunya mengoptimumkan dan menjalankan sesuatu dengan lebih pantas. Panda, sebaliknya, menjalankan setiap operasi dengan segera, yang boleh menjadi lebih perlahan untuk tugasan besar.

4. Multithreading

Polar boleh menggunakan berbilang teras CPU pada masa yang sama untuk memproses data, yang menjadikannya lebih pantas untuk set data yang besar. Pandas kebanyakannya berbenang tunggal, bermakna ia hanya boleh menggunakan satu teras CPU pada satu masa, yang melambatkan keadaan, terutamanya dengan set data yang besar.


Mengapa Polar Sangat Cepat?

Polar adalah pantas untuk beberapa sebab:

  • Ia terbina dalam Rust, bahasa pengaturcaraan yang terkenal dengan kelajuan dan keselamatannya, menjadikannya sangat cekap.
  • Ia menggunakan Apache Arrow, cara khas untuk menyimpan data dalam memori yang menjadikannya lebih mudah dan pantas untuk digunakan merentas bahasa pengaturcaraan yang berbeza.

Gabungan Rust dan Apache Arrow ini memberikan Polar kelebihan berbanding panda apabila ia berkaitan dengan kelajuan dan penggunaan memori.


Kekuatan dan Had Panda

Walaupun Polars bagus untuk data besar, panda masih mempunyai tempatnya. Panda berfungsi dengan baik dengan set data bersaiz kecil hingga sederhana dan telah wujud sekian lama sehingga ia mempunyai banyak ciri dan komuniti yang besar. Jadi, jika anda tidak menggunakan set data yang besar, panda mungkin masih menjadi pilihan terbaik anda.

Walau bagaimanapun, apabila set data anda semakin besar, panda cenderung menggunakan lebih banyak memori dan menjadi lebih perlahan, menjadikan Polar pilihan yang lebih baik dalam situasi tersebut.


Bilakah Anda Harus Menggunakan Polar?

Anda harus mempertimbangkan untuk menggunakan Polar jika:

  • Anda sedang bekerja dengan set data yang besar (berjuta-juta atau berbilion baris).
  • Anda memerlukan kelajuan dan prestasi untuk menyelesaikan tugasan anda dengan cepat.
  • Anda mempunyai kekangan ingatan dan perlu menjimatkan jumlah RAM yang anda gunakan.

Kesimpulan

Kedua-dua Polar dan panda mempunyai kekuatan mereka. Jika anda bekerja dengan set data kecil hingga sederhana, panda masih merupakan alat yang hebat. Tetapi jika anda berurusan dengan set data yang besar dan memerlukan sesuatu yang lebih pantas dan lebih cekap memori, Polar pastinya berbaloi untuk dicuba. Peningkatan prestasinya, terima kasih kepada Rust dan Apache Arrow, menjadikannya pilihan yang hebat untuk tugasan intensif data.

Memandangkan Python terus berkembang, Polars mungkin menjadi alat goto baharu untuk mengendalikan data besar.

Selamat Pengekodan ? ?

Atas ialah kandungan terperinci Polar vs. Panda Era Baru Bingkai Data dalam Python ?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Menyenaraikan senarai di Python: Memilih kaedah yang betulMenyenaraikan senarai di Python: Memilih kaedah yang betulMay 14, 2025 am 12:11 AM

Tomergelistsinpython, operator youCanusethe, extendmethod, listcomprehension, oritertools.chain, eachwithspecificadvantages: 1) operatorSimpleButlessefficientficorlargelists;

Bagaimana untuk menggabungkan dua senarai dalam Python 3?Bagaimana untuk menggabungkan dua senarai dalam Python 3?May 14, 2025 am 12:09 AM

Dalam Python 3, dua senarai boleh disambungkan melalui pelbagai kaedah: 1) Pengendali penggunaan, yang sesuai untuk senarai kecil, tetapi tidak cekap untuk senarai besar; 2) Gunakan kaedah Extend, yang sesuai untuk senarai besar, dengan kecekapan memori yang tinggi, tetapi akan mengubah suai senarai asal; 3) menggunakan * pengendali, yang sesuai untuk menggabungkan pelbagai senarai, tanpa mengubah suai senarai asal; 4) Gunakan itertools.chain, yang sesuai untuk set data yang besar, dengan kecekapan memori yang tinggi.

Rentetan senarai concatenate pythonRentetan senarai concatenate pythonMay 14, 2025 am 12:08 AM

Menggunakan kaedah Join () adalah cara yang paling berkesan untuk menyambungkan rentetan dari senarai di Python. 1) Gunakan kaedah Join () untuk menjadi cekap dan mudah dibaca. 2) Kitaran menggunakan pengendali tidak cekap untuk senarai besar. 3) Gabungan pemahaman senarai dan menyertai () sesuai untuk senario yang memerlukan penukaran. 4) Kaedah mengurangkan () sesuai untuk jenis pengurangan lain, tetapi tidak cekap untuk penyambungan rentetan. Kalimat lengkap berakhir.

Pelaksanaan Python, apa itu?Pelaksanaan Python, apa itu?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingpythoncodeIntoExecutableInstructions.1) TheinterpreterreadsTheCode, convertingIntoByteCode, yang mana -mana

Python: Apakah ciri -ciri utamaPython: Apakah ciri -ciri utamaMay 14, 2025 am 12:02 AM

Ciri -ciri utama Python termasuk: 1. Sintaks adalah ringkas dan mudah difahami, sesuai untuk pemula; 2. Sistem jenis dinamik, meningkatkan kelajuan pembangunan; 3. Perpustakaan standard yang kaya, menyokong pelbagai tugas; 4. Komuniti dan ekosistem yang kuat, memberikan sokongan yang luas; 5. Tafsiran, sesuai untuk skrip dan prototaip cepat; 6. Sokongan multi-paradigma, sesuai untuk pelbagai gaya pengaturcaraan.

Python: pengkompil atau penterjemah?Python: pengkompil atau penterjemah?May 13, 2025 am 12:10 AM

Python adalah bahasa yang ditafsirkan, tetapi ia juga termasuk proses penyusunan. 1) Kod python pertama kali disusun ke dalam bytecode. 2) Bytecode ditafsirkan dan dilaksanakan oleh mesin maya Python. 3) Mekanisme hibrid ini menjadikan python fleksibel dan cekap, tetapi tidak secepat bahasa yang disusun sepenuhnya.

Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?Python untuk gelung vs semasa gelung: Bila menggunakan yang mana?May 13, 2025 am 12:07 AM

UseAforLoopWheniteratingOvereForforpecificNumbimes; Useaphileloopwhencontinuinguntilaconditionismet.forloopsareidealforknownownsequences, sementara yang tidak digunakan.

Gelung Python: Kesalahan yang paling biasaGelung Python: Kesalahan yang paling biasaMay 13, 2025 am 12:07 AM

Pythonloopscanleadtoerrorslikeinfiniteloops, pengubahsuaianListsduringiteration, off-by-oneerrors, sifar-indexingissues, andnestedloopinefficies.toavoidthese: 1) use'i

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Nordhold: Sistem Fusion, dijelaskan
4 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

SecLists

SecLists

SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)