Rumah >pembangunan bahagian belakang >Golang >Melaksanakan Sistem Pemprosesan Pesanan: Pengesanan dan Pembalakan Bahagian Teragih
Selamat datang ke ansuran kelima siri kami untuk melaksanakan sistem pemprosesan pesanan yang canggih! Dalam catatan kami sebelum ini, kami telah merangkumi segala-galanya daripada menyediakan seni bina asas kepada melaksanakan aliran kerja lanjutan dan pemantauan menyeluruh. Hari ini, kami menyelami dunia pengesanan dan pembalakan yang diedarkan, dua komponen penting untuk mengekalkan kebolehmerhatian dalam seni bina perkhidmatan mikro.
Dalam seni bina perkhidmatan mikro, permintaan pengguna tunggal selalunya merangkumi berbilang perkhidmatan. Sifat teragih ini menjadikannya mencabar untuk memahami aliran permintaan dan mendiagnosis isu apabila ia timbul. Pengesanan teragih dan pembalakan berpusat menangani cabaran ini dengan menyediakan:
Untuk melaksanakan pengesanan dan pengelogan yang diedarkan, kami akan menggunakan dua set alat yang berkuasa:
OpenTelemetry : Rangka kerja pemerhatian untuk perisian asli awan yang menyediakan satu set API, perpustakaan, ejen dan perkhidmatan pengumpul untuk menangkap jejak dan metrik yang diedarkan daripada aplikasi anda.
ELK Stack : Koleksi tiga produk sumber terbuka - Elasticsearch, Logstash dan Kibana - daripada Elastic, yang bersama-sama menyediakan platform yang teguh untuk pengingesan log, penyimpanan dan visualisasi.
Menjelang akhir siaran ini, anda akan dapat:
Jom selami!
Sebelum kita mula melaksanakan, mari semak beberapa konsep utama yang akan menjadi penting untuk persediaan pengesanan dan pengelogan yang diedarkan kami.
Pengesanan teragih ialah kaedah menjejak permintaan semasa ia mengalir melalui pelbagai perkhidmatan dalam sistem teragih. Ia menyediakan cara untuk memahami kitaran hayat penuh permintaan, termasuk:
Surih biasanya terdiri daripada satu atau lebih rentang. Span mewakili unit kerja atau operasi. Ia menjejaki operasi khusus yang dibuat oleh permintaan, merekodkan masa operasi bermula dan tamat, serta data lain.
OpenTelemetry ialah rangka kerja pemerhatian untuk perisian asli awan. Ia menyediakan satu set API, perpustakaan, ejen dan perkhidmatan pengumpul tunggal untuk menangkap jejak dan metrik yang diedarkan daripada aplikasi anda. Komponen utama termasuk:
Pengelogan berkesan dalam sistem teragih memerlukan pertimbangan yang teliti:
Timbunan ELK ialah pilihan popular untuk pengurusan log:
Pengagregatan log melibatkan pengumpulan data log daripada pelbagai sumber dan menyimpannya di lokasi berpusat. Ini membolehkan:
Analisis log melibatkan pengekstrakan cerapan bermakna daripada data log, yang boleh termasuk:
Dengan mengambil kira konsep ini, mari kita teruskan untuk melaksanakan pengesanan teragih dalam sistem pemprosesan pesanan kami.
Mari mulakan dengan melaksanakan pengesanan teragih dalam sistem pemprosesan pesanan kami menggunakan OpenTelemetry.
Pertama, kami perlu menambah OpenTelemetry pada perkhidmatan Go kami. Tambahkan kebergantungan berikut pada fail go.mod anda:
require ( go.opentelemetry.io/otel v1.7.0 go.opentelemetry.io/otel/exporters/jaeger v1.7.0 go.opentelemetry.io/otel/sdk v1.7.0 go.opentelemetry.io/otel/trace v1.7.0 )
Seterusnya, mari sediakan pembekal pengesan dalam fungsi utama kami:
package main import ( "log" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/exporters/jaeger" "go.opentelemetry.io/otel/sdk/resource" tracesdk "go.opentelemetry.io/otel/sdk/trace" semconv "go.opentelemetry.io/otel/semconv/v1.4.0" ) func initTracer() func() { exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) if err != nil { log.Fatal(err) } tp := tracesdk.NewTracerProvider( tracesdk.WithBatcher(exporter), tracesdk.WithResource(resource.NewWithAttributes( semconv.SchemaURL, semconv.ServiceNameKey.String("order-processing-service"), attribute.String("environment", "production"), )), ) otel.SetTracerProvider(tp) return func() { if err := tp.Shutdown(context.Background()); err != nil { log.Printf("Error shutting down tracer provider: %v", err) } } } func main() { cleanup := initTracer() defer cleanup() // Rest of your main function... }
Ini menyediakan penyedia pengesan yang mengeksport jejak ke Jaeger, bahagian belakang pengesanan teragih yang popular.
Sekarang, mari tambahkan pengesanan pada aliran kerja pemprosesan pesanan kami. Kita akan mulakan dengan fungsi CreateOrder:
import ( "context" "go.opentelemetry.io/otel" "go.opentelemetry.io/otel/attribute" "go.opentelemetry.io/otel/trace" ) func CreateOrder(ctx context.Context, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() span.SetAttributes(attribute.Int64("order.id", order.ID)) span.SetAttributes(attribute.Float64("order.total", order.Total)) // Validate order if err := validateOrder(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Order validation failed") return err } // Process payment if err := processPayment(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Payment processing failed") return err } // Update inventory if err := updateInventory(ctx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Inventory update failed") return err } span.SetStatus(codes.Ok, "Order created successfully") return nil }
Ini mencipta rentang baharu untuk fungsi CreateOrder dan menambah atribut yang berkaitan. Ia juga mewujudkan rentang kanak-kanak untuk setiap langkah utama dalam proses.
Apabila membuat panggilan ke perkhidmatan lain, kami perlu menyebarkan konteks jejak. Berikut ialah contoh cara melakukan ini dengan klien HTTP:
import ( "net/http" "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp" ) func callExternalService(ctx context.Context, url string) error { client := http.Client{Transport: otelhttp.NewTransport(http.DefaultTransport)} req, err := http.NewRequestWithContext(ctx, "GET", url, nil) if err != nil { return err } _, err = client.Do(req) return err }
Ini menggunakan pakej otelhttp untuk menyebarkan konteks surih secara automatik dalam pengepala HTTP.
Untuk operasi tak segerak, kami perlu memastikan kami menghantar konteks jejak dengan betul. Berikut ialah contoh menggunakan kumpulan pekerja:
func processOrderAsync(ctx context.Context, order Order) { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "processOrderAsync") defer span.End() workerPool <- func() { processCtx := trace.ContextWithSpan(context.Background(), span) if err := processOrder(processCtx, order); err != nil { span.RecordError(err) span.SetStatus(codes.Error, "Async order processing failed") } else { span.SetStatus(codes.Ok, "Async order processing succeeded") } } }
Ini mencipta rentang baharu untuk operasi async dan menyerahkannya kepada fungsi pekerja.
Untuk menyepadukan OpenTelemetry dengan aliran kerja Temporal, kita boleh menggunakan pakej go.opentelemetry.io/contrib/instrumentation/go.temporal.io/temporal/oteltemporalgrpc:
import ( "go.temporal.io/sdk/client" "go.temporal.io/sdk/worker" "go.opentelemetry.io/contrib/instrumentation/go.temporal.io/temporal/oteltemporalgrpc" ) func initTemporalClient() (client.Client, error) { return client.NewClient(client.Options{ HostPort: "temporal:7233", ConnectionOptions: client.ConnectionOptions{ DialOptions: []grpc.DialOption{ grpc.WithUnaryInterceptor(oteltemporalgrpc.UnaryClientInterceptor()), grpc.WithStreamInterceptor(oteltemporalgrpc.StreamClientInterceptor()), }, }, }) } func initTemporalWorker(c client.Client, taskQueue string) worker.Worker { w := worker.New(c, taskQueue, worker.Options{ WorkerInterceptors: []worker.WorkerInterceptor{ oteltemporalgrpc.WorkerInterceptor(), }, }) return w }
Ini menyediakan pelanggan dan pekerja Temporal dengan instrumentasi OpenTelemetry.
Kami telah pun menyediakan Jaeger sebagai bahagian belakang jejak kami dalam fungsi initTracer. Untuk menggambarkan jejak kami, kami perlu menambahkan Jaeger pada docker-compose.yml kami:
services: # ... other services ... jaeger: image: jaegertracing/all-in-one:1.35 ports: - "16686:16686" - "14268:14268" environment: - COLLECTOR_OTLP_ENABLED=true
Kini anda boleh mengakses UI Jaeger di http://localhost:16686 untuk melihat dan menganalisis jejak anda.
Dalam bahagian seterusnya, kami akan menyediakan pengelogan berpusat menggunakan tindanan ELK untuk melengkapkan persediaan pengesanan teragih kami.
Sekarang kami telah mengedarkan pengesanan di tempatnya, mari sediakan pembalakan berpusat menggunakan tindanan ELK (Elasticsearch, Logstash, Kibana).
Pertama, mari tambahkan Elasticsearch pada docker-compose.yml kami:
services: # ... other services ... elasticsearch: image: docker.elastic.co/elasticsearch/elasticsearch:7.14.0 environment: - discovery.type=single-node - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ports: - "9200:9200" volumes: - elasticsearch_data:/usr/share/elasticsearch/data volumes: elasticsearch_data: driver: local
Ini menyediakan contoh Elasticsearch satu nod untuk tujuan pembangunan.
Next, let’s add Logstash to our docker-compose.yml:
services: # ... other services ... logstash: image: docker.elastic.co/logstash/logstash:7.14.0 volumes: - ./logstash/pipeline:/usr/share/logstash/pipeline ports: - "5000:5000/tcp" - "5000:5000/udp" - "9600:9600" depends_on: - elasticsearch
Create a Logstash pipeline configuration file at ./logstash/pipeline/logstash.conf:
input { tcp { port => 5000 codec => json } } filter { if [trace_id] { mutate { add_field => { "[@metadata][trace_id]" => "%{trace_id}" } } } } output { elasticsearch { hosts => ["elasticsearch:9200"] index => "order-processing-logs-%{+YYYY.MM.dd}" } }
This configuration sets up Logstash to receive JSON logs over TCP, process them, and forward them to Elasticsearch.
Now, let’s add Kibana to our docker-compose.yml:
services: # ... other services ... kibana: image: docker.elastic.co/kibana/kibana:7.14.0 ports: - "5601:5601" environment: ELASTICSEARCH_URL: http://elasticsearch:9200 ELASTICSEARCH_HOSTS: '["http://elasticsearch:9200"]' depends_on: - elasticsearch
You can access the Kibana UI at http://localhost:5601 once it’s up and running.
To send structured logs to Logstash, we’ll use the logrus library. First, add it to your go.mod:
go get github.com/sirupsen/logrus
Now, let’s set up a logger in our main function:
import ( "github.com/sirupsen/logrus" "gopkg.in/sohlich/elogrus.v7" ) func initLogger() *logrus.Logger { log := logrus.New() log.SetFormatter(&logrus.JSONFormatter{}) hook, err := elogrus.NewElasticHook("elasticsearch:9200", "warning", "order-processing-logs") if err != nil { log.Fatalf("Failed to create Elasticsearch hook: %v", err) } log.AddHook(hook) return log } func main() { log := initLogger() // Rest of your main function... }
This sets up a JSON formatter for our logs and adds an Elasticsearch hook to send logs directly to Elasticsearch.
Now, let’s update our CreateOrder function to use structured logging:
func CreateOrder(ctx context.Context, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() logger := logrus.WithFields(logrus.Fields{ "order_id": order.ID, "trace_id": span.SpanContext().TraceID().String(), }) logger.Info("Starting order creation") // Validate order if err := validateOrder(ctx, order); err != nil { logger.WithError(err).Error("Order validation failed") span.RecordError(err) span.SetStatus(codes.Error, "Order validation failed") return err } // Process payment if err := processPayment(ctx, order); err != nil { logger.WithError(err).Error("Payment processing failed") span.RecordError(err) span.SetStatus(codes.Error, "Payment processing failed") return err } // Update inventory if err := updateInventory(ctx, order); err != nil { logger.WithError(err).Error("Inventory update failed") span.RecordError(err) span.SetStatus(codes.Error, "Inventory update failed") return err } logger.Info("Order created successfully") span.SetStatus(codes.Ok, "Order created successfully") return nil }
This code logs each step of the order creation process, including any errors that occur. It also includes the trace ID in each log entry, which will be crucial for correlating logs with traces.
Now that we have both distributed tracing and centralized logging set up, let’s explore how to correlate this information for a unified view of system behavior.
We’ve already included the trace ID in our log entries. To make this correlation even more powerful, we can add a custom field to our spans that includes the log index:
span.SetAttributes(attribute.String("log.index", "order-processing-logs-"+time.Now().Format("2006.01.02")))
This allows us to easily jump from a span in Jaeger to the corresponding logs in Kibana.
We’ve already added trace IDs to our log entries in the previous section. This allows us to search for all log entries related to a particular trace in Kibana.
To link our Prometheus metrics to traces, we can use exemplars. Here’s an example of how to do this:
import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" "go.opentelemetry.io/otel/trace" ) var ( orderProcessingDuration = promauto.NewHistogramVec( prometheus.HistogramOpts{ Name: "order_processing_duration_seconds", Help: "Duration of order processing in seconds", Buckets: prometheus.DefBuckets, }, []string{"status"}, ) ) func CreateOrder(ctx context.Context, order Order) error { // ... existing code ... start := time.Now() // ... process order ... duration := time.Since(start) orderProcessingDuration.WithLabelValues("success").Observe(duration.Seconds(), prometheus.Labels{ "trace_id": span.SpanContext().TraceID().String(), }) // ... rest of the function ... }
This adds the trace ID as an exemplar to our order processing duration metric.
With logs, traces, and metrics all correlated, we can create a unified view of our system’s behavior:
This allows you to seamlessly navigate between metrics, traces, and logs, providing a comprehensive view of your system’s behavior and making it easier to debug issues.
With our logs centralized in Elasticsearch, let’s explore some strategies for effective log aggregation and analysis.
For high-volume services, logging every event can be prohibitively expensive. Implement log sampling to reduce the volume while still maintaining visibility:
func shouldLog() bool { return rand.Float32() < 0.1 // Log 10% of events } func CreateOrder(ctx context.Context, order Order) error { // ... existing code ... if shouldLog() { logger.Info("Order created successfully") } // ... rest of the function ... }
In Kibana, create dashboards that provide insights into your system’s behavior. Some useful visualizations might include:
Use Kibana’s alerting features to set up alerts based on log patterns. For example:
Elasticsearch provides machine learning capabilities that can be used for anomaly detection in logs. You can set up machine learning jobs in Kibana to detect:
These machine learning insights can help you identify issues before they become critical problems.
In the next sections, we’ll cover best practices for logging in a microservices architecture and explore some advanced OpenTelemetry techniques.
When implementing logging in a microservices architecture, there are several best practices to keep in mind to ensure your logs are useful, manageable, and secure.
Consistency in log formats across all your services is crucial for effective log analysis. In our Go services, we can create a custom logger that enforces a standard format:
import ( "github.com/sirupsen/logrus" ) type StandardLogger struct { *logrus.Logger ServiceName string } func NewStandardLogger(serviceName string) *StandardLogger { logger := logrus.New() logger.SetFormatter(&logrus.JSONFormatter{ FieldMap: logrus.FieldMap{ logrus.FieldKeyTime: "timestamp", logrus.FieldKeyLevel: "severity", logrus.FieldKeyMsg: "message", }, }) return &StandardLogger{ Logger: logger, ServiceName: serviceName, } } func (l *StandardLogger) WithFields(fields logrus.Fields) *logrus.Entry { return l.Logger.WithFields(logrus.Fields{ "service": l.ServiceName, }).WithFields(fields) }
This logger ensures that all log entries include a “service” field and use consistent field names.
Contextual logging involves including relevant context with each log entry. In a microservices architecture, this often means including a request ID or trace ID that can be used to correlate logs across services:
func CreateOrder(ctx context.Context, logger *StandardLogger, order Order) error { tr := otel.Tracer("order-processing") ctx, span := tr.Start(ctx, "CreateOrder") defer span.End() logger := logger.WithFields(logrus.Fields{ "order_id": order.ID, "trace_id": span.SpanContext().TraceID().String(), }) logger.Info("Starting order creation") // ... rest of the function ... }
It’s crucial to ensure that sensitive information, such as personal data or credentials, is not logged. You can create a custom log hook to redact sensitive information:
type SensitiveDataHook struct{} func (h *SensitiveDataHook) Levels() []logrus.Level { return logrus.AllLevels } func (h *SensitiveDataHook) Fire(entry *logrus.Entry) error { if entry.Data["credit_card"] != nil { entry.Data["credit_card"] = "REDACTED" } return nil } // In your main function: logger.AddHook(&SensitiveDataHook{})
In a production environment, you need to manage log retention and rotation to control storage costs and comply with data retention policies. While Elasticsearch can handle this to some extent, you might also want to implement log rotation at the application level:
import ( "gopkg.in/natefinch/lumberjack.v2" ) func initLogger() *logrus.Logger { logger := logrus.New() logger.SetOutput(&lumberjack.Logger{ Filename: "/var/log/myapp.log", MaxSize: 100, // megabytes MaxBackups: 3, MaxAge: 28, //days Compress: true, }) return logger }
For certain operations, you may need to maintain an audit trail for compliance reasons. You can create a separate audit logger for this purpose:
type AuditLogger struct { logger *logrus.Logger } func NewAuditLogger() *AuditLogger { logger := logrus.New() logger.SetFormatter(&logrus.JSONFormatter{}) // Set up a separate output for audit logs // This could be a different file, database, or even a separate Elasticsearch index return &AuditLogger{logger: logger} } func (a *AuditLogger) LogAuditEvent(ctx context.Context, event string, details map[string]interface{}) { span := trace.SpanFromContext(ctx) a.logger.WithFields(logrus.Fields{ "event": event, "trace_id": span.SpanContext().TraceID().String(), "details": details, }).Info("Audit event") } // Usage: auditLogger.LogAuditEvent(ctx, "OrderCreated", map[string]interface{}{ "order_id": order.ID, "user_id": order.UserID, })
Now that we have a solid foundation for distributed tracing, let’s explore some advanced techniques to get even more value from OpenTelemetry.
Custom span attributes and events can provide additional context to your traces:
func ProcessPayment(ctx context.Context, order Order) error { _, span := otel.Tracer("payment-service").Start(ctx, "ProcessPayment") defer span.End() span.SetAttributes( attribute.String("payment.method", order.PaymentMethod), attribute.Float64("payment.amount", order.Total), ) // Process payment... if paymentSuccessful { span.AddEvent("PaymentProcessed", trace.WithAttributes( attribute.String("transaction_id", transactionID), )) } else { span.AddEvent("PaymentFailed", trace.WithAttributes( attribute.String("error", "Insufficient funds"), )) } return nil }
Baggage allows you to propagate key-value pairs across service boundaries:
import ( "go.opentelemetry.io/otel/baggage" ) func AddUserInfoToBaggage(ctx context.Context, userID string) context.Context { b, _ := baggage.Parse(fmt.Sprintf("user_id=%s", userID)) return baggage.ContextWithBaggage(ctx, b) } func GetUserIDFromBaggage(ctx context.Context) string { if b := baggage.FromContext(ctx); b != nil { if v := b.Member("user_id"); v.Key() != "" { return v.Value() } } return "" }
For high-volume services, tracing every request can be expensive. Implement a sampling strategy to reduce the volume while still maintaining visibility:
import ( "go.opentelemetry.io/otel/sdk/trace" "go.opentelemetry.io/otel/sdk/trace/sampling" ) sampler := sampling.ParentBased( sampling.TraceIDRatioBased(0.1), // Sample 10% of traces ) tp := trace.NewTracerProvider( trace.WithSampler(sampler), // ... other options ... )
While we’ve been using Jaeger as our tracing backend, you might want to create a custom exporter for a different backend or for special processing:
type CustomExporter struct{} func (e *CustomExporter) ExportSpans(ctx context.Context, spans []trace.ReadOnlySpan) error { for _, span := range spans { // Process or send the span data as needed fmt.Printf("Exporting span: %s\n", span.Name()) } return nil } func (e *CustomExporter) Shutdown(ctx context.Context) error { // Cleanup logic here return nil } // Use the custom exporter: exporter := &CustomExporter{} tp := trace.NewTracerProvider( trace.WithBatcher(exporter), // ... other options ... )
OpenTelemetry can be integrated with many existing monitoring tools. For example, to send traces to both Jaeger and Zipkin:
jaegerExporter, _ := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) zipkinExporter, _ := zipkin.New("http://zipkin:9411/api/v2/spans") tp := trace.NewTracerProvider( trace.WithBatcher(jaegerExporter), trace.WithBatcher(zipkinExporter), // ... other options ... )
These advanced techniques will help you get the most out of OpenTelemetry in your order processing system.
In the next sections, we’ll cover performance considerations, testing and validation strategies, and discuss some challenges and considerations when implementing distributed tracing and logging at scale.
When implementing distributed tracing and logging, it’s crucial to consider the performance impact on your system. Let’s explore some strategies to optimize performance.
type AsyncLogger struct { ch chan *logrus.Entry } func NewAsyncLogger(bufferSize int) *AsyncLogger { logger := &AsyncLogger{ ch: make(chan *logrus.Entry, bufferSize), } go logger.run() return logger } func (l *AsyncLogger) run() { for entry := range l.ch { entry.Logger.Out.Write(entry.Bytes()) } } func (l *AsyncLogger) Log(entry *logrus.Entry) { select { case l.ch <- entry: default: // Buffer full, log dropped } }
func (l *AsyncLogger) SampledLog(entry *logrus.Entry, sampleRate float32) { if rand.Float32() < sampleRate { l.Log(entry) } }
sampler := trace.ParentBased( trace.TraceIDRatioBased(0.1), // Sample 10% of traces ) tp := trace.NewTracerProvider( trace.WithSampler(sampler), // ... other options ... )
func ProcessOrder(ctx context.Context, order Order) error { ctx, span := tracer.Start(ctx, "ProcessOrder") defer span.End() // Don't create a span for this quick operation validateOrder(order) // Create a span for this potentially slow operation ctx, paymentSpan := tracer.Start(ctx, "ProcessPayment") err := processPayment(ctx, order) paymentSpan.End() if err != nil { return err } // ... rest of the function }
Use the OpenTelemetry SDK’s built-in batching exporter to reduce the number of network calls:
exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint("http://jaeger:14268/api/traces"))) if err != nil { log.Fatalf("Failed to create Jaeger exporter: %v", err) } tp := trace.NewTracerProvider( trace.WithBatcher(exporter, trace.WithMaxExportBatchSize(100), trace.WithBatchTimeout(5 * time.Second), ), // ... other options ... )
PUT _ilm/policy/logs_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50GB", "max_age": "1d" } } }, "delete": { "min_age": "30d", "actions": { "delete": {} } } } } }
Use a caching layer like Redis to store frequently accessed logs and traces:
import ( "github.com/go-redis/redis/v8" ) func getCachedTrace(traceID string) (*Trace, error) { val, err := redisClient.Get(ctx, "trace:"+traceID).Bytes() if err == redis.Nil { // Trace not in cache, fetch from storage and cache it trace, err := fetchTraceFromStorage(traceID) if err != nil { return nil, err } redisClient.Set(ctx, "trace:"+traceID, trace, 1*time.Hour) return trace, nil } else if err != nil { return nil, err } var trace Trace json.Unmarshal(val, &trace) return &trace, nil }
Proper testing and validation are crucial to ensure the reliability of your distributed tracing and logging implementation.
Use the OpenTelemetry testing package to unit test your trace instrumentation:
import ( "testing" "go.opentelemetry.io/otel/sdk/trace/tracetest" ) func TestProcessOrder(t *testing.T) { sr := tracetest.NewSpanRecorder() tp := trace.NewTracerProvider(trace.WithSpanProcessor(sr)) otel.SetTracerProvider(tp) ctx := context.Background() err := ProcessOrder(ctx, Order{ID: "123"}) if err != nil { t.Errorf("ProcessOrder failed: %v", err) } spans := sr.Ended() if len(spans) != 2 { t.Errorf("Expected 2 spans, got %d", len(spans)) } if spans[0].Name() != "ProcessOrder" { t.Errorf("Expected span named 'ProcessOrder', got '%s'", spans[0].Name()) } if spans[1].Name() != "ProcessPayment" { t.Errorf("Expected span named 'ProcessPayment', got '%s'", spans[1].Name()) } }
Set up integration tests that cover your entire tracing pipeline:
func TestTracingPipeline(t *testing.T) { // Start a test Jaeger instance jaeger := startTestJaeger() defer jaeger.Stop() // Initialize your application with tracing app := initializeApp() // Perform some operations that should generate traces resp, err := app.CreateOrder(Order{ID: "123"}) if err != nil { t.Fatalf("Failed to create order: %v", err) } // Wait for traces to be exported time.Sleep(5 * time.Second) // Query Jaeger for the trace traces, err := jaeger.QueryTraces(resp.TraceID) if err != nil { t.Fatalf("Failed to query traces: %v", err) } // Validate the trace validateTrace(t, traces[0]) }
Test your Logstash configuration to ensure it correctly parses and processes logs:
input { generator { message => '{"timestamp":"2023-06-01T10:00:00Z","severity":"INFO","message":"Order created","order_id":"123","trace_id":"abc123"}' count => 1 } } filter { json { source => "message" } } output { stdout { codec => rubydebug } }
Run this configuration with logstash -f test_config.conf and verify the output.
Perform load tests to understand the performance impact of tracing:
func BenchmarkWithTracing(b *testing.B) { // Initialize tracing tp := initTracer() defer tp.Shutdown(context.Background()) b.ResetTimer() for i := 0; i < b.N; i++ { ctx, span := tp.Tracer("benchmark").Start(context.Background(), "operation") performOperation(ctx) span.End() } } func BenchmarkWithoutTracing(b *testing.B) { for i := 0; i < b.N; i++ { performOperation(context.Background()) } }
Compare the results to understand the overhead introduced by tracing.
Set up monitoring for your tracing and logging systems:
As you implement and scale your distributed tracing and logging system, keep these challenges and considerations in mind:
Dalam siaran ini, kami telah membincangkan pengesanan dan pengelogan teragih yang komprehensif untuk sistem pemprosesan pesanan kami. Kami telah melaksanakan pengesanan dengan OpenTelemetry, menyediakan pengelogan berpusat dengan timbunan ELK, log dan jejak berkorelasi serta meneroka teknik dan pertimbangan lanjutan.
Dalam bahagian seterusnya dan akhir siri kami, kami akan menumpukan pada Kesediaan Pengeluaran dan Kebolehskalaan. Kami akan meliputi:
Nantikan semasa kami memberikan sentuhan akhir pada sistem pemprosesan pesanan kami yang canggih, memastikan ia sedia untuk kegunaan pengeluaran secara berskala!
Adakah anda menghadapi masalah yang mencabar, atau memerlukan perspektif luaran tentang idea atau projek baharu? Saya boleh tolong! Sama ada anda ingin membina konsep bukti teknologi sebelum membuat pelaburan yang lebih besar, atau anda memerlukan panduan tentang isu yang sukar, saya sedia membantu.
Jika anda berminat untuk bekerja dengan saya, sila hubungi melalui e-mel di hungaikevin@gmail.com.
Mari jadikan cabaran anda sebagai peluang!
Atas ialah kandungan terperinci Melaksanakan Sistem Pemprosesan Pesanan: Pengesanan dan Pembalakan Bahagian Teragih. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!