Rumah >masalah biasa >Matriks Kekeliruan lwn. Keluk ROC: Bila Untuk Menggunakan Yang Untuk Penilaian Model

Matriks Kekeliruan lwn. Keluk ROC: Bila Untuk Menggunakan Yang Untuk Penilaian Model

百草
百草asal
2024-09-05 11:24:00396semak imbas

Prestasi model perlu dinilai dalam pembelajaran mesin dan sains data untuk menghasilkan model yang boleh dipercayai, tepat dan cekap dalam membuat sebarang jenis ramalan. Beberapa alatan biasa untuk ini ialah Matriks Kekeliruan dan Keluk ROC. Kedua-duanya mempunyai tujuan yang berbeza dan mengetahui dengan tepat masa untuk menggunakannya adalah penting dalam penilaian model yang mantap. Dalam blog ini, kami akan membincangkan butiran kedua-dua alatan, membandingkannya dan akhirnya memberikan panduan tentang masa untuk digunakan sama ada dalam penilaian model.

Matriks Kekeliruan lwn. Keluk ROC: Bila Untuk Menggunakan Yang Untuk Penilaian Model

Prestasi model perlu dinilai dalam pembelajaran mesin dan sains data untuk menghasilkan model yang boleh dipercayai, tepat dan cekap dalam membuat sebarang jenis ramalan. Beberapa alatan biasa untuk ini ialah Matriks Kekeliruan dan Keluk ROC. Kedua-duanya mempunyai tujuan yang berbeza dan mengetahui dengan tepat masa untuk menggunakannya adalah penting dalam penilaian model yang mantap. Dalam blog ini, kami akan membincangkan butiran kedua-dua alatan, membandingkannya dan akhirnya memberikan panduan tentang masa untuk menggunakan sama ada dalam penilaian model.

Memahami Matriks Kekeliruan

Matriks Kekeliruan ialah jadual digunakan untuk menggambarkan prestasi model klasifikasi. Secara amnya, ia memecahkan ramalan model kepada empat kelas:

  1. Positif Benar (TP): Model meramalkan kelas positif dengan betul.

  2. Negatif Benar (TN): Model meramalkan kelas negatif dengan betul.

  3. Positif Palsu (FP): Model meramal kelas positif secara salah.

  4. Negatif Palsu (FN): Model telah tersilap meramalkan kelas negatif; Ralat jenis II.

Dalam kes pengelasan binari, ini boleh disediakan dalam matriks 2x2; dalam kes pengelasan berbilang kelas, ia dilanjutkan kepada matriks yang lebih besar. 

Metrik Utama Diperoleh Daripada Matriks Kekeliruan

  • Ketepatan: (TP TN) / (TP TN FP FN)

  • Ketepatan: TP / (TP FP)

  • Recall (Sensitiviti): TP / (TP FN)

  • Skor F1: 2  (Ketepatan * Recall) / (Precision Recall)

Bila Menggunakan Matriks Kekeliruan

Gunakan Matriks Kekeliruan terutamanya apabila anda mahukan cerapan terperinci tentang hasil pengelasan. Perkara yang akan diberikan kepada anda ialah analisis terperinci tentang prestasinya dalam kelas, lebih khusus lagi, kelemahan model, contohnya, positif palsu yang tinggi.

  • Data data tidak seimbang kelas: Ketepatan, Ingat kembali dan Skor F1 ialah beberapa metrik yang boleh diperoleh daripada Matriks Kekeliruan. Metrik ini berguna dalam situasi di mana anda menangani ketidakseimbangan kelas; ia benar-benar menunjukkan prestasi model berbanding dengan ketepatan.

  • Masalah klasifikasi binari dan berbilang kelas: Matriks Kekeliruan mencari kegunaan harian dalam masalah pengelasan binari. Namun, ia boleh digeneralisasikan dengan mudah untuk menganggarkan model yang dilatih pada berbilang kelas, menjadi alat serba boleh.

Memahami Keluk ROC

Keluk Ciri Pengendalian Penerima (ROC) ialah plot grafik yang menggambarkan prestasi sistem pengelas binari kerana ambang diskriminasi dipelbagaikan. Keluk ROC harus dibuat dengan memplot Kadar Positif Sejati terhadap Kadar Positif Palsu pada pelbagai tetapan ambang.

  • Kadar Positif Sejati, Recall: TP / (TP FN)

  • Kadar Positif Palsu (FPR): FP / (FP TN) 

Kawasan di bawah Lengkung ROC (AUC-ROC) selalunya berfungsi sebagai ukuran ringkasan sejauh mana model dapat membezakan kelas positif dan negatif. AUC 1 sepadan dengan model yang sempurna; AUC sebanyak 0.5 sepadan dengan model tanpa kuasa diskriminasi.

Bila Menggunakan Keluk ROC

Keluk ROC akan berguna terutamanya dalam senario berikut:


  • Mempelbagaikan Ambang Keputusan
  • Keluk ROC membantu apabila anda ingin mengetahui sensitiviti -pertukaran kekhususan pada ambang yang berbeza. 

  • Matriks Kekeliruan lwn. Keluk ROC: Perbezaan Utama

1. Butiran lwn. Gambaran Keseluruhan


Matriks Kekeliruan: Ia menyediakan pecahan kelas demi kelas prestasi model, yang sangat membantu dalam mendiagnosis masalah dengan model tentang kelas tertentu.

  • Keluk ROC: Ia memberikan gambaran keseluruhan keupayaan diskriminasi model merentasi semua ambang yang mungkin, diringkaskan oleh AUC.

  • 2. Set Data Tidak Seimbang

  • Matriks Kekeliruan: Antara lain, metrik seperti Precision dan Recall daripada Matriks Kekeliruan lebih jelas dalam konteks ketidakseimbangan kelas.

  • Keluk ROC: Dalam kes set data yang sangat tidak seimbang, keluk ROC mungkin kurang bermaklumat kerana ia tidak mengambil kira pengedaran kelas secara langsung.

  • 3. Kebolehgunaan

  • Matriks Kekeliruan: Bukan sahaja binari tetapi juga klasifikasi berbilang kelas berfungsi.

  • Keluk ROC: Terutamanya dalam klasifikasi binari, walaupun sambungan kepada berbilang- masalah kelas tersedia

  • 4. Ketergantungan Ambang

  • Matriks Kekeliruan: Metrik dikira pada ambang tetap.

  • Keluk ROC: Prestasi untuk semua ambang yang mungkin divisualisasikan.

  • Bila Gunakan Yang Mana


    Semuanya bergantung pada kes dan keperluan khusus sama ada anda perlu menggunakan Confusion Matrix atau ROC Curve.

Pilihan antara Matriks Kekeliruan dan Keluk ROC adalah berdasarkan keperluan khusus anda dan konteks masalah anda. 

Gunakan Matriks Kekeliruan Apabila:


Anda ingin mengetahui prestasi model anda secara terperinci untuk setiap kelas.

  • Anda sedang berurusan dengan data tidak seimbang kelas dan memerlukan lebih daripada metrik ketepatan.

  • Anda sedang mengusahakan penilaian model untuk pengkelasan berbilang kelas. 

  • Gunakan Keluk ROC Apabila:

  • Anda ingin membandingkan prestasi pengelas binari yang berbeza pada pelbagai ambang.

  • Anda berminat dengan keupayaan umum model untuk membezakan antara kelas.

  • Anda ingin mempunyai hanya satu metrik ringkasan — AUC — untuk membandingkan model .

  • Kesimpulan
  • Kedua-dua Matriks Kekeliruan dan Keluk ROC adalah tambahan yang sangat berguna kepada mana-mana beg helah saintis data. Kedua-dua alat ini memberikan pandangan yang berbeza tentang prestasi model. Contohnya, Matriks Kekeliruan pandai menyediakan metrik terperinci khusus kelas yang penting untuk memahami dengan tepat bagaimana model itu bertindak, terutamanya untuk set data yang tidak seimbang. Sebaliknya, keluk ROC melakukan kerja yang cukup baik untuk menangkap kuasa diskriminasi keseluruhan pengelas binari merentas semua ambang. Menguasai setiap kekuatan dan kelemahan khusus teknik, anda kemudiannya akan dapat menggunakan alat yang betul untuk keperluan penilaian model khusus anda yang sedia ada dalam membina model pembelajaran mesin yang lebih tepat, lebih dipercayai dan lebih berkesan.

Atas ialah kandungan terperinci Matriks Kekeliruan lwn. Keluk ROC: Bila Untuk Menggunakan Yang Untuk Penilaian Model. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn