Rumah > Artikel > pembangunan bahagian belakang > Bagaimana retriever yang sedar sejarah berfungsi?
Retriever sedar sejarah yang dibincangkan dalam siaran ini ialah yang dikembalikan oleh fungsi create_history_aware_retriever daripada pakej LangChain. Fungsi ini direka bentuk untuk menerima input berikut dalam pembinanya:
Apabila dipanggil, retriever yang menyedari sejarah mengambil pertanyaan pengguna sebagai input dan mengeluarkan senarai dokumen yang berkaitan. Dokumen yang berkaitan adalah berdasarkan pertanyaan yang digabungkan dengan konteks yang disediakan oleh sejarah sembang.
Pada akhirnya, saya meringkaskan aliran kerjanya.
from langchain.chains import create_history_aware_retriever from langchain_community.document_loaders import WebBaseLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_chroma import Chroma from dotenv import load_dotenv import bs4 load_dotenv() # To get OPENAI_API_KEY
def create_vectorsore_retriever(): """ Returns a vector store retriever based on the text of a specific web page. """ URL = r'https://lilianweng.github.io/posts/2023-06-23-agent/' loader = WebBaseLoader( web_paths=(URL,), bs_kwargs=dict( parse_only=bs4.SoupStrainer(class_=("post-content", "post-title", "post-header")) )) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, add_start_index=True) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) return vectorstore.as_retriever()
def create_prompt(): """ Returns a prompt instructed to produce a rephrased question based on the user's last question, but referencing previous messages (chat history). """ system_instruction = """Given a chat history and the latest user question \ which might reference context in the chat history, formulate a standalone question \ which can be understood without the chat history. Do NOT answer the question, \ just reformulate it if needed and otherwise return it as is.""" prompt = ChatPromptTemplate.from_messages([ ("system", system_instruction), MessagesPlaceholder("chat_history"), ("human", "{input}")]) return prompt
llm = ChatOpenAI(model='gpt-4o-mini') vectorstore_retriever = create_vectorsore_retriever() prompt = create_prompt()
history_aware_retriever = create_history_aware_retriever( llm, vectorstore_retriever, prompt )
Di sini, soalan sedang ditanya tanpa sebarang sejarah sembang, jadi pencari semula hanya membalas dengan dokumen yang berkaitan dengan soalan terakhir.
chat_history = [] docs = history_aware_retriever.invoke({'input': 'what is planning?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1: Planning is essentially in order to optimize believability at the moment vs in time. Prompt template: {Intro of an agent X}. Here is X's plan today in broad strokes: 1) Relationships between agents and observations of one agent by another are all taken into consideration for planning and reacting. Environment information is present in a tree structure. Chunk 2: language. Essentially, the planning step is outsourced to an external tool, assuming the availability of domain-specific PDDL and a suitable planner which is common in certain robotic setups but not in many other domains. Chunk 3: Another quite distinct approach, LLM+P (Liu et al. 2023), involves relying on an external classical planner to do long-horizon planning. This approach utilizes the Planning Domain Definition Language (PDDL) as an intermediate interface to describe the planning problem. In this process, LLM (1) translates the problem into “Problem PDDL”, then (2) requests a classical planner to generate a PDDL plan based on an existing “Domain PDDL”, and finally (3) translates the PDDL plan back into natural Chunk 4: Planning Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks. Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results. Memory
Kini, berdasarkan sejarah sembang, retriever tahu bahawa manusia ingin tahu tentang penguraian tugas serta perancangan. Jadi ia bertindak balas dengan ketulan teks yang merujuk kedua-dua tema.
chat_history = [ ('human', 'when I ask about planning I want to know about Task Decomposition too.')] docs = history_aware_retriever.invoke({'input': 'what is planning?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1: Task decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs. Chunk 2: Fig. 1. Overview of a LLM-powered autonomous agent system. Component One: Planning# A complicated task usually involves many steps. An agent needs to know what they are and plan ahead. Task Decomposition# Chunk 3: Planning Subgoal and decomposition: The agent breaks down large tasks into smaller, manageable subgoals, enabling efficient handling of complex tasks. Reflection and refinement: The agent can do self-criticism and self-reflection over past actions, learn from mistakes and refine them for future steps, thereby improving the quality of final results. Memory Chunk 4: Challenges in long-term planning and task decomposition: Planning over a lengthy history and effectively exploring the solution space remain challenging. LLMs struggle to adjust plans when faced with unexpected errors, making them less robust compared to humans who learn from trial and error.
Kini soalan sepenuhnya adalah berdasarkan sejarah sembang. Dan kita dapat melihat bahawa ia bertindak balas dengan ketulan teks yang merujuk kepada konsep yang betul.
chat_history = [ ('human', 'What is ReAct?'), ('ai', 'ReAct integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space')] docs = history_aware_retriever.invoke({'input': 'It is a way of doing what?', 'chat_history': chat_history}) for i, doc in enumerate(docs): print(f'Chunk {i+1}:') print(doc.page_content) print()
Chunk 1:<br> ReAct (Yao et al. 2023) integrates reasoning and acting within LLM by extending the action space to be a combination of task-specific discrete actions and the language space. The former enables LLM to interact with the environment (e.g. use Wikipedia search API), while the latter prompting LLM to generate reasoning traces in natural language.<br> The ReAct prompt template incorporates explicit steps for LLM to think, roughly formatted as:<br> Thought: ...<br> Action: ...<br> Observation: ... <p>Chunk 2:<br> Fig. 2. Examples of reasoning trajectories for knowledge-intensive tasks (e.g. HotpotQA, FEVER) and decision-making tasks (e.g. AlfWorld Env, WebShop). (Image source: Yao et al. 2023).<br> In both experiments on knowledge-intensive tasks and decision-making tasks, ReAct works better than the Act-only baseline where Thought: … step is removed.</p> <p>Chunk 3:<br> The LLM is provided with a list of tool names, descriptions of their utility, and details about the expected input/output.<br> It is then instructed to answer a user-given prompt using the tools provided when necessary. The instruction suggests the model to follow the ReAct format - Thought, Action, Action Input, Observation.</p> <p>Chunk 4:<br> Case Studies#<br> Scientific Discovery Agent#<br> ChemCrow (Bran et al. 2023) is a domain-specific example in which LLM is augmented with 13 expert-designed tools to accomplish tasks across organic synthesis, drug discovery, and materials design. The workflow, implemented in LangChain, reflects what was previously described in the ReAct and MRKLs and combines CoT reasoning with tools relevant to the tasks:<br> </p>
Kesimpulannya, aliran kerja pengumpul semula sejarah berfungsi seperti berikut apabila .invoke({'input': '...', 'chat_history': '...'}) dipanggil:
Obs.: Adalah penting untuk ambil perhatian bahawa pembenaman yang digunakan untuk mengubah teks menjadi vektor ialah yang ditentukan untuk Chroma.from_documents dipanggil. Apabila tiada yang dinyatakan (kes semasa), pembenaman kroma lalai digunakan.
Atas ialah kandungan terperinci Bagaimana retriever yang sedar sejarah berfungsi?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!