Rumah >pembangunan bahagian belakang >Tutorial Python >ASAS PYTHON
Python ialah bahasa pengaturcaraan peringkat tinggi yang ditafsirkan yang terkenal dengan kesederhanaan dan serba boleh. Pembangunan web Analisis data Kecerdasan buatan Pengkomputeran saintifik Automasi Dll, ia digunakan secara meluas kerana banyak aplikasinya. Pustaka standardnya yang luas, sintaks ringkas dan penaipan dinamik menjadikannya popular di kalangan pembangun baharu serta pengekod berpengalaman.
Untuk mula menggunakan Python, pertama, kita mesti memasang penterjemah Python dan editor teks atau IDE (Persekitaran Pembangunan Bersepadu). Pilihan popular termasuk PyCharm, Visual Studio Code dan Spyder.
Muat turun Python:
Pasang Python:
Pasang Editor Kod
Walaupun anda boleh menulis kod Python dalam mana-mana editor teks, menggunakan Persekitaran Pembangunan Bersepadu (IDE) atau editor kod dengan sokongan Python boleh meningkatkan produktiviti anda. Berikut ialah beberapa pilihan popular:
Pasang Persekitaran Maya
Mencipta persekitaran maya membantu mengurus kebergantungan dan mengelakkan konflik antara projek yang berbeza.
Tulis dan Jalankan Skrip Python Mudah
print("Hello, World!")
Untuk memulakan pengekodan dalam Python, anda mesti memasang penterjemah Python dan editor teks atau IDE (Persekitaran Pembangunan Bersepadu). Pilihan popular termasuk PyCharm, Visual Studio Code dan Spyder.
Sintaks Asas
Sintaks Python adalah ringkas dan mudah dipelajari. Ia menggunakan lekukan untuk menentukan blok kod dan bukannya pendakap kerinting atau kata kunci. Pembolehubah ditetapkan menggunakan pengendali tugasan (=).
Contoh:
x = 5 # assign 5 to variable x y = "Hello" # assign string "Hello" to variable y
Jenis Data
Python mempunyai sokongan terbina dalam untuk pelbagai jenis data, termasuk:
Contoh:
my_list = [1, 2, 3, "four", 5.5] # create a list with mixed data types
Pengendali dan Struktur Kawalan
Python menyokong pelbagai operator untuk aritmetik, perbandingan, operasi logik dan banyak lagi. Struktur kawalan seperti pernyataan if-else dan untuk gelung digunakan untuk membuat keputusan dan lelaran.
Contoh:
x = 5 if x > 10: print("x is greater than 10") else: print("x is less than or equal to 10") for i in range(5): print(i) # prints numbers from 0 to 4
Fungsi
Fungsi ialah blok kod boleh guna semula yang mengambil hujah dan mengembalikan nilai. Mereka membantu menyusun kod dan mengurangkan pertindihan.
Contoh:
def greet(name): print("Hello, " + name + "!") greet("John") # outputs "Hello, John!"
Modul dan Pakej
Python mempunyai koleksi perpustakaan dan modul yang luas untuk pelbagai tugasan, seperti matematik, fail I/O dan rangkaian. Anda boleh mengimport modul menggunakan pernyataan import.
Contoh:
import math print(math.pi) # outputs the value of pi
Input/Output Fail
Python menyediakan pelbagai cara untuk membaca dan menulis fail, termasuk fail teks, fail CSV dan banyak lagi.
Contoh:
with open("example.txt", "w") as file: file.write("This is an example text file.")
Pengendalian Pengecualian
Python menggunakan blok cuba-kecuali untuk mengendalikan ralat dan pengecualian dengan anggun.
Contoh:
try: x = 5 / 0 except ZeroDivisionError: print("Cannot divide by zero!")
Pengaturcaraan Berorientasikan Objek
Python menyokong konsep pengaturcaraan berorientasikan objek (OOP) seperti kelas, objek, warisan dan polimorfisme.
Example:
class Person: def __init__(self, name, age): self.name = name self.age = age def greet(self): print("Hello, my name is " + self.name + " and I am " + str(self.age) + " years old.") person = Person("John", 30) person.greet() # outputs "Hello, my name is John and I am 30 years old."
Advanced Topics
Python has many advanced features, including generators, decorators, and asynchronous programming.
Example:
def infinite_sequence(): num = 0 while True: yield num num += 1 seq = infinite_sequence() for _ in range(10): print(next(seq)) # prints numbers from 0 to 9
Decorators
Decorators are a special type of function that can modify or extend the behavior of another function. They are denoted by the @ symbol followed by the decorator's name.
Example:
def my_decorator(func): def wrapper(): print("Something is happening before the function is called.") func() print("Something is happening after the function is called.") return wrapper @my_decorator def say_hello(): print("Hello!") say_hello()
Generators
Generators are a type of iterable, like lists or tuples, but they generate their values on the fly instead of storing them in memory.
Example:
def infinite_sequence(): num = 0 while True: yield num num += 1 seq = infinite_sequence() for _ in range(10): print(next(seq)) # prints numbers from 0 to 9
Asyncio
Asyncio is a library for writing single-threaded concurrent code using coroutines, multiplexing I/O access over sockets and other resources, and implementing network clients and servers.
Example:
import asyncio async def my_function(): await asyncio.sleep(1) print("Hello!") asyncio.run(my_function())
Data Structures
Python has a range of built-in data structures, including lists, tuples, dictionaries, sets, and more. It also has libraries like NumPy and Pandas for efficient numerical and data analysis.
Example:
import numpy as np my_array = np.array([1, 2, 3, 4, 5]) print(my_array * 2) # prints [2, 4, 6, 8, 10]
Web Development
Python has popular frameworks like Django, Flask, and Pyramid for building web applications. It also has libraries like Requests and BeautifulSoup for web scraping and crawling.
Example:
from flask import Flask, request app = Flask(__name__) @app.route("/") def hello(): return "Hello, World!" if __name__ == "__main__": app.run()
Data Analysis
Python has libraries like Pandas, NumPy, and Matplotlib for data analysis and visualization. It also has Scikit-learn for machine learning tasks.
Example:
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv("my_data.csv") plt.plot(data["column1"]) plt.show()
Machine Learning
Python has libraries like Scikit-learn, TensorFlow, and Keras for building machine learning models. It also has libraries like NLTK and spaCy for natural language processing.
Example:
from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split boston_data = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston_data.data, boston_data.target, test_size=0.2, random_state=0) model = LinearRegression() model.fit(X_train, y_train) print(model.score(X_test, y_test)) # prints the R^2 score of the model
Python is a versatile language with a wide range of applications, from web development to data analysis and machine learning. Its simplicity, readability, and large community make it an ideal language for beginners and experienced programmers alike.
Atas ialah kandungan terperinci ASAS PYTHON. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!