Rumah > Artikel > pembangunan bahagian belakang > Pemfaktoran semula berdasarkan prinsip reka bentuk: contoh sistem perangkak pengumpulan data
Meningkatkan kualiti kod sentiasa menjadi isu penting dalam pembangunan perisian. Dalam artikel ini, kami mengambil sistem perangkak pengumpulan data sebagai contoh dan menerangkan secara khusus cara menggunakan prinsip reka bentuk dan amalan terbaik melalui pemfaktoran semula langkah demi langkah.
Mula-mula, kita mulakan dengan pengikis web yang sangat mudah dengan semua fungsi disepadukan ke dalam satu kelas.
Diterjemah dengan DeepL.com (versi percuma)
project_root/ ├── web_scraper.py ├── main.py └── requirements.txt
web_scraper.py
import requests import json import sqlite3 class WebScraper: def __init__(self, url): self.url = url def fetch_data(self): response = requests.get(self.url) data = response.text parsed_data = self.parse_data(data) enriched_data = self.enrich_data(parsed_data) self.save_data(enriched_data) return enriched_data def parse_data(self, data): return json.loads(data) def enrich_data(self, data): # Apply business logic here # Example: extract only data containing specific keywords return {k: v for k, v in data.items() if 'important' in v.lower()} def save_data(self, data): conn = sqlite3.connect('test.db') cursor = conn.cursor() cursor.execute('INSERT INTO data (json_data) VALUES (?)', (json.dumps(data),)) conn.commit() conn.close()
main.py
from web_scraper import WebScraper def main(): scraper = WebScraper('https://example.com/api/data') data = scraper.fetch_data() print(data) if __name__ == "__main__": main()
struktur direktori
project_root/ ├── data_fetcher.py ├── data_parser.py ├── data_saver.py ├── data_enricher.py ├── web_scraper.py ├── main.py └── requirements.txt
data_enricher.py
class DataEnricher: def enrich(self, data): return {k: v for k, v in data.items() if 'important' in v.lower()}
web_scraper.py
from data_fetcher import DataFetcher from data_parser import DataParser from data_enricher import DataEnricher from data_saver import DataSaver class WebScraper: def __init__(self, url): self.url = url self.fetcher = DataFetcher() self.parser = DataParser() self.enricher = DataEnricher() self.saver = DataSaver() def fetch_data(self): raw_data = self.fetcher.fetch(self.url) parsed_data = self.parser.parse(raw_data) enriched_data = self.enricher.enrich(parsed_data) self.saver.save(enriched_data) return enriched_data
Perubahan ini menjelaskan tanggungjawab setiap kelas dan meningkatkan kebolehgunaan semula dan kebolehujian. Walau bagaimanapun, logik perniagaan masih dibenamkan dalam kelas DataEnricher.
struktur direktori
project_root/ ├── interfaces/ │ ├── __init__.py │ ├── data_fetcher_interface.py │ ├── data_parser_interface.py │ ├── data_enricher_interface.py │ └── data_saver_interface.py ├── implementations/ │ ├── __init__.py │ ├── http_data_fetcher.py │ ├── json_data_parser.py │ ├── keyword_data_enricher.py │ └── sqlite_data_saver.py ├── web_scraper.py ├── main.py └── requirements.txt
antara muka/data_fetcher_interface.py
from abc import ABC, abstractmethod class DataFetcherInterface(ABC): @abstractmethod def fetch(self, url: str) -> str: pass
antara muka/data_parser_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataParserInterface(ABC): @abstractmethod def parse(self, raw_data: str) -> Dict[str, Any]: pass
antara muka/data_enricher_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataEnricherInterface(ABC): @abstractmethod def enrich(self, data: Dict[str, Any]) -> Dict[str, Any]: pass
antara muka/data_saver_interface.py
from abc import ABC, abstractmethod from typing import Dict, Any class DataSaverInterface(ABC): @abstractmethod def save(self, data: Dict[str, Any]) -> None: pass
implementations/keyword_data_enricher.py
import os from interfaces.data_enricher_interface import DataEnricherInterface class KeywordDataEnricher(DataEnricherInterface): def __init__(self): self.keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data): return {k: v for k, v in data.items() if self.keyword in str(v).lower()}
web_scraper.py
from interfaces.data_fetcher_interface import DataFetcherInterface from interfaces.data_parser_interface import DataParserInterface from interfaces.data_enricher_interface import DataEnricherInterface from interfaces.data_saver_interface import DataSaverInterface class WebScraper: def __init__(self, fetcher: DataFetcherInterface, parser: DataParserInterface, enricher: DataEnricherInterface, saver: DataSaverInterface): self.fetcher = fetcher self.parser = parser self.enricher = enricher self.saver = saver def fetch_data(self, url): raw_data = self.fetcher.fetch(url) parsed_data = self.parser.parse(raw_data) enriched_data = self.enricher.enrich(parsed_data) self.saver.save(enriched_data) return enriched_data
Perubahan utama pada peringkat ini ialah
Perubahan ini telah meningkatkan fleksibiliti dan kebolehlanjutan sistem. Walau bagaimanapun, logik perniagaan kekal tertanam dalam DataEnricherInterface dan pelaksanaannya. Langkah seterusnya ialah memisahkan lagi logik perniagaan ini dan mentakrifkannya dengan jelas sebagai lapisan domain.
Dalam langkah sebelumnya, pengenalan antara muka meningkatkan fleksibiliti sistem. Walau bagaimanapun, logik perniagaan (dalam kes ini, penentuan dan penapisan kepentingan data) masih dianggap sebagai sebahagian daripada lapisan data. Berdasarkan konsep reka bentuk dipacu domain, menganggap logik perniagaan ini sebagai konsep pusat sistem dan melaksanakannya sebagai lapisan domain bebas memberikan faedah berikut
Struktur direktori dikemas kini:
project_root/ ├── domain/ │ ├── __init__.py │ ├── scraped_data.py │ └── data_enrichment_service.py ├── data/ │ ├── __init__.py │ ├── interfaces/ │ │ ├── __init__.py │ │ ├── data_fetcher_interface.py │ │ ├── data_parser_interface.py │ │ └── data_saver_interface.py │ ├── implementations/ │ │ ├── __init__.py │ │ ├── http_data_fetcher.py │ │ ├── json_data_parser.py │ │ └── sqlite_data_saver.py ├── application/ │ ├── __init__.py │ └── web_scraper.py ├── main.py └── requirements.txt
Pada peringkat ini, peranan DataEnricherInterface dan KeywordDataEnricher akan dialihkan ke model ScrapedData dan DataEnrichmentService pada lapisan domain. Butiran perubahan ini disediakan di bawah.
Sebelum tukar (Bahagian 2)
class DataEnricherInterface(ABC): @abstractmethod def enrich(self, data: Dict[str, Any]) -> Dict[str, Any]: pass
class KeywordDataEnricher(DataEnricherInterface): def __init__(self): self.keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data): return {k: v for k, v in data.items() if self.keyword in str(v).lower()}
Selepas pengubahsuaian (Seksyen 3)
@dataclass class ScrapedData: content: Dict[str, Any] source_url: str def is_important(self) -> bool: important_keyword = os.getenv('IMPORTANT_KEYWORD', 'important') return any(important_keyword in str(v).lower() for v in self.content.values())
class DataEnrichmentService: def __init__(self): self.important_keyword = os.getenv('IMPORTANT_KEYWORD', 'important') def enrich(self, data: ScrapedData) -> ScrapedData: if data.is_important(): enriched_content = {k: v for k, v in data.content.items() if self.important_keyword in str(v).lower()} return ScrapedData(content=enriched_content, source_url=data.source_url) return data
Perubahan ini menambah baik perkara berikut.
logik perniagaan telah dialihkan ke lapisan domain, menghapuskan keperluan untuk DataEnricherInterface.
the KeywordDataEnricher functionality has been merged into the DataEnrichmentService, centralizing the business logic in one place.
The is_important method has been added to the ScrapedData model. This makes the domain model itself responsible for determining the importance of data and makes the domain concept clearer.
DataEnrichmentService now handles ScrapedData objects directly, improving type safety.
The WebScraper class will also be updated to reflect this change.
from data.interfaces.data_fetcher_interface import DataFetcherInterface from data.interfaces.data_parser_interface import DataParserInterface from data.interfaces.data_saver_interface import DataSaverInterface from domain.scraped_data import ScrapedData from domain.data_enrichment_service import DataEnrichmentService class WebScraper: def __init__(self, fetcher: DataFetcherInterface, parser: DataParserInterface, saver: DataSaverInterface, enrichment_service: DataEnrichmentService): self.fetcher = fetcher self.parser = parser self.saver = saver self.enrichment_service = enrichment_service def fetch_data(self, url: str) -> ScrapedData: raw_data = self.fetcher.fetch(url) parsed_data = self.parser.parse(raw_data) scraped_data = ScrapedData(content=parsed_data, source_url=url) enriched_data = self.enrichment_service.enrich(scraped_data) self.saver.save(enriched_data) return enriched_data
This change completely shifts the business logic from the data layer to the domain layer, giving the system a clearer structure. The removal of the DataEnricherInterface and the introduction of the DataEnrichmentService are not just interface replacements, but fundamental changes in the way business logic is handled.
This article has demonstrated how to improve code quality and apply design principles specifically through a step-by-step refactoring process for the data collection crawler system. The main areas of improvement are as follows.
These improvements have greatly enhanced the system's modularity, reusability, testability, maintainability, and scalability. In particular, by applying some concepts of domain-driven design, the business logic became clearer and the structure was more flexible to accommodate future changes in requirements. At the same time, by maintaining the interfaces, we ensured the flexibility to easily change and extend the data layer implementation.
It is important to note that this refactoring process is not a one-time event, but part of a continuous improvement process. Depending on the size and complexity of the project, it is important to adopt design principles and DDD concepts at the appropriate level and to make incremental improvements.
Finally, the approach presented in this article can be applied to a wide variety of software projects, not just data collection crawlers. We encourage you to use them as a reference as you work to improve code quality and design.
Atas ialah kandungan terperinci Pemfaktoran semula berdasarkan prinsip reka bentuk: contoh sistem perangkak pengumpulan data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!