Pemilihan ciri ialah langkah penting dalam proses membina model pembelajaran mesin. Memilih ciri yang baik untuk model dan tugas yang ingin kami capai boleh meningkatkan prestasi.
Jika kita berurusan dengan set data berdimensi tinggi, maka memilih ciri adalah amat penting. Ia membolehkan model belajar dengan lebih pantas dan lebih baik. Ideanya adalah untuk mencari bilangan ciri yang optimum dan ciri yang paling bermakna.
Dalam artikel ini, kami akan memperkenalkan dan melaksanakan pemilihan ciri baharu melalui strategi pembelajaran pengukuhan. Kita mulakan dengan membincangkan pembelajaran pengukuhan, khususnya proses keputusan Markov. Ia adalah kaedah yang sangat baru dalam bidang sains data, terutamanya sesuai untuk pemilihan ciri. Kemudian ia memperkenalkan pelaksanaannya dan cara memasang dan menggunakan pustaka python (FSRLearing). Akhir sekali, contoh mudah digunakan untuk menunjukkan proses ini.
Pembelajaran Pengukuhan: Masalah Keputusan Markov untuk Pemilihan Ciri
Teknik pembelajaran pengukuhan (RL) boleh menjadi sangat berkesan dalam menyelesaikan masalah seperti penyelesaian permainan. Konsep pembelajaran pengukuhan adalah berdasarkan Markov Decision Process (MDP). Maksudnya di sini bukan untuk memahami definisi yang mendalam tetapi untuk mendapatkan pemahaman umum tentang cara ia berfungsi dan bagaimana ia boleh berguna untuk masalah kita. Dalam pembelajaran pengukuhan, agen belajar dengan berinteraksi dengan persekitarannya. Ia membuat keputusan dengan memerhatikan keadaan semasa dan isyarat ganjaran, dan akan menerima maklum balas positif atau negatif berdasarkan tindakan yang dipilih. Matlamat ejen adalah untuk memaksimumkan ganjaran terkumpul dengan mencuba tindakan yang berbeza. Konsep penting pembelajaran peneguhan
Pemikiran di sebalik pembelajaran peneguhan ialah agen bermula dari persekitaran yang tidak diketahui. Operasi carian untuk menyelesaikan misi. Ejen akan lebih cenderung untuk memilih beberapa tindakan di bawah pengaruh keadaan semasa dan tindakan yang dipilih sebelum ini. Setiap kali keadaan baharu dicapai dan tindakan diambil, ejen menerima ganjaran. Berikut ialah parameter utama yang perlu kita tentukan untuk pemilihan ciri:
Nyatakan, tindakan, ganjaran, cara memilih tindakan
Pertama, subset ciri yang terdapat dalam set data. Sebagai contoh, jika set data mempunyai tiga ciri (umur, jantina, ketinggian) ditambah label, keadaan yang mungkin adalah seperti berikut:
[] --> Empty set [Age], [Gender], [Height] --> 1-feature set [Age, Gender], [Gender, Height], [Age, Height] --> 2-feature set [Age, Gender, Height] --> All-feature set
Dalam keadaan, susunan ciri tidak penting, kita perlu melihat at it Buat koleksi, bukan senarai ciri.
Mengenai tindakan, kita boleh beralih daripada satu subset kepada mana-mana subset ciri yang belum diterokai. Dalam masalah pemilihan ciri, tindakan adalah untuk memilih ciri yang belum diterokai dalam keadaan semasa dan menambahnya ke keadaan seterusnya. Berikut adalah beberapa tindakan yang mungkin:
[Age] -> [Age, Gender] [Gender, Height] -> [Age, Gender, Height]
Berikut adalah contoh tindakan yang mustahil:
[Age] -> [Age, Gender, Height] [Age, Gender] -> [Age] [Gender] -> [Gender, Gender]
Kami telah menentukan keadaan dan tindakan, bukan ganjarannya lagi. Ganjaran adalah nombor nyata yang digunakan untuk menilai kualiti negeri.
Dalam masalah pemilihan ciri, satu ganjaran yang mungkin adalah untuk meningkatkan metrik ketepatan model yang sama dengan menambahkan ciri baharu. Berikut ialah contoh bagaimana ganjaran dikira:
[Age] --> Accuracy = 0.65 [Age, Gender] --> Accuracy = 0.76 Reward(Gender) = 0.76 - 0.65 = 0.11
Untuk setiap negeri yang kami lawati buat kali pertama, pengelas (model) dilatih menggunakan set ciri. Nilai ini disimpan dalam keadaan dan pengelas yang sepadan Proses melatih pengelas memakan masa dan susah payah, jadi kami hanya melatihnya sekali. Oleh kerana pengelas tidak mengambil kira susunan ciri, kita boleh menganggap masalah ini sebagai graf dan bukannya pokok. Dalam contoh ini, ganjaran untuk memilih "jantina" sebagai ciri baharu untuk model ialah perbezaan ketepatan antara keadaan semasa dan keadaan seterusnya.
Dalam gambar di atas, setiap ciri dipetakan kepada nombor ("Umur" ialah 1, "Jantina" ialah 2 dan "Ketinggian" ialah 3). Bagaimanakah kita memilih keadaan seterusnya daripada keadaan semasa atau bagaimana kita meneroka alam sekitar?
Kita perlu mencari jalan yang optimum kerana jika kita meneroka semua set ciri yang mungkin dalam masalah dengan 10 ciri, bilangan keadaan akan menjadi
10! + 2 = 3 628 802
这里的+2是因为考虑一个空状态和一个包含所有可能特征的状态。我们不可能在每个状态下都训练一个模型,这是不可能完成的,而且这只是有10个特征,如果有100个特征那基本上就是无解了。
但是在强化学习方法中,我们不需要在所有的状态下都去训练一个模型,我们要为这个问题确定一些停止条件,比如从当前状态随机选择下一个动作,概率为epsilon(介于0和1之间,通常在0.2左右),否则选择使函数最大化的动作。对于特征选择是每个特征对模型精度带来的奖励的平均值。
这里的贪心算法包含两个步骤:
1、以概率为epsilon,我们在当前状态的可能邻居中随机选择下一个状态
2、选择下一个状态,使添加到当前状态的特征对模型的精度贡献最大。为了减少时间复杂度,可以初始化了一个包含每个特征值的列表。每当选择一个特性时,此列表就会更新。使用以下公式,更新是非常理想的:
AORf:特征“f”带来的奖励的平均值
K: f被选中的次数
V(F):特征集合F的状态值(为了简单描述,本文不详细介绍)
所以我们就找出哪个特征给模型带来了最高的准确性。这就是为什么我们需要浏览不同的状态,在在许多不同的环境中评估模型特征的最全局准确值。
因为目标是最小化算法访问的状态数,所以我们访问的未访问过的状态越少,需要用不同特征集训练的模型数量就越少。因为从时间和计算能力的角度来看,训练模型以获得精度是最昂贵方法,我们要尽量减少训练的次数。
最后在任何情况下,算法都会停止在最终状态(包含所有特征的集合)而我们希望避免达到这种状态,因为用它来训练模型是最昂贵的。
上面就是我们针对于特征选择的强化学习描述,下面我们将详细介绍在python中的实现。
用于特征选择与强化学习的python库
有一个python库可以让我们直接解决这个问题。但是首先我们先准备数据
我们直接使用UCI机器学习库中的数据:
#Get the pandas DataFrame from the csv file (15 features, 690 rows) australian_data = pd.read_csv('australian_data.csv', header=None) #DataFrame with the features X = australian_data.drop(14, axis=1) #DataFrame with the labels y = australian_data[14]
然后安装我们用到的库
pip install FSRLearning
直接导入
from FSRLearning import Feature_Selector_RL
Feature_Selector_RL类就可以创建一个特性选择器。我们需要以下的参数
feature_number (integer): DataFrame X中的特性数量
feature_structure (dictionary):用于图实现的字典
eps (float [0;1]):随机选择下一状态的概率,0为贪婪算法,1为随机算法
alpha (float [0;1]):控制更新速率,0表示不更新状态,1表示经常更新状态
gamma (float[0,1]):下一状态观察的调节因子,0为近视行为状态,1为远视行为
nb_iter (int):遍历图的序列数
starting_state (" empty "或" random "):如果" empty ",则算法从空状态开始,如果" random ",则算法从图中的随机状态开始
所有参数都可以机型调节,但对于大多数问题来说,迭代大约100次就可以了,而epsilon值在0.2左右通常就足够了。起始状态对于更有效地浏览图形很有用,但它非常依赖于数据集,两个值都可以测试。
我们可以用下面的代码简单地初始化选择器:
fsrl_obj = Feature_Selector_RL(feature_number=14, nb_iter=100)
与大多数ML库相同,训练算法非常简单:
results = fsrl_obj.fit_predict(X, y)
下面是输出的一个例子:
输出是一个5元组,如下所示:
DataFrame X中特性的索引(类似于映射)
特征被观察的次数
所有迭代后特征带来的奖励的平均值
从最不重要到最重要的特征排序(这里2是最不重要的特征,7是最重要的特征)
全局访问的状态数
还可以与Scikit-Learn的RFE选择器进行比较。它将X, y和选择器的结果作为输入。
fsrl_obj.compare_with_benchmark(X, y, results)
输出是在RFE和FSRLearning的全局度量的每一步选择之后的结果。它还输出模型精度的可视化比较,其中x轴表示所选特征的数量,y轴表示精度。两条水平线是每种方法的准确度中值。
Average benchmark accuracy : 0.854251012145749, rl accuracy : 0.8674089068825909 Median benchmark accuracy : 0.8552631578947368, rl accuracy : 0.868421052631579 Probability to get a set of variable with a better metric than RFE : 1.0 Area between the two curves : 0.17105263157894512
可以看到RL方法总是为模型提供比RFE更好的特征集。
另一个有趣的方法是get_plot_ratio_exploration。它绘制了一个图,比较一个精确迭代序列中已经访问节点和访问节点的数量。
由于设置了停止条件,算法的时间复杂度呈指数级降低。即使特征的数量很大,收敛性也会很快被发现。下面的图表示一定大小的集合被访问的次数。
在所有迭代中,算法访问包含6个或更少变量的状态。在6个变量之外,我们可以看到达到的状态数量正在减少。这是一个很好的行为,因为用小的特征集训练模型比用大的特征集训练模型要快。
总结
我们可以看到RL方法对于最大化模型的度量是非常有效的。它总是很快地收敛到一个有趣的特性子集。该方法在使用FSRLearning库的ML项目中非常容易和快速地实现。
Atas ialah kandungan terperinci Pemilihan ciri melalui strategi pembelajaran pengukuhan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod
