cari
Rumahpembangunan bahagian belakangTutorial Python将Python的Django框架与认证系统整合的方法

将Django与其他现有认证系统的用户名和密码或者认证方法进行整合是可以办到的。

例如,你所在的公司也许已经安装了LDAP,并且为每一个员工都存储了相应的用户名和密码。 如果用户在LDAP和基于Django的应用上拥有独立的账号,那么这时无论对于网络管理员还是用户自己来说,都是一件很令人头痛的事儿。

为了解决这样的问题,Django认证系统能让您以插件方式与其他认证资源进行交互。 您可以覆盖Diango默认的基于数据库的模式,您还可以使用默认的系统与其他系统进行交互。
指定认证后台

在后台,Django维护了一个用于检查认证的后台列表。 当某个人调用 django.contrib.auth.authenticate() (如14章中所述)时,Django会尝试对其认证后台进行遍历认证。 如果第一个认证方法失败,Django会尝试认证第二个,以此类推,一直到尝试完。

认证后台列表在AUTHENTICATION_BACKENDS设置中进行指定。 它应该是指向知道如何认证的Python类的Python路径的名字数组。 这些类可以在你Python路径的任何位置。

默认情况下,AUTHENTICATION_BACKENDS被设置为如下:

('django.contrib.auth.backends.ModelBackend',)

那就是检测Django用户数据库的基本认证模式。

AUTHENTICATION_BACKENDS的顺序很重要,如果用户名和密码在多个后台中都是有效的,那么Django将会在第一个正确匹配后停止进一步的处理。
编写认证后台

一个认证后台其实就是一个实现了如下两个方法的类: get_user(id) 和 authenticate(**credentials) 。

方法 get_user 需要一个参数 id ,这个 id 可以是用户名,数据库ID或者其他任何数值,该方法会返回一个 User 对象。

方法 authenticate 使用证书作为关键参数。 大多数情况下,该方法看起来如下:

class MyBackend(object):
  def authenticate(self, username=None, password=None):
    # Check the username/password and return a User.

但是有时候它也可以认证某个短语,例如:

class MyBackend(object):
  def authenticate(self, token=None):
    # Check the token and return a User.

每一个方法中, authenticate 都应该检测它所获取的证书,并且当证书有效时,返回一个匹配于该证书的 User 对象,如果证书无效那么返回 None 。 如果它们不合法,就返回None。

Django管理系统紧密连接于其自己后台数据库的 User 对象。 实现这个功能的最好办法就是为您的后台数据库(如LDAP目录,外部SQL数据库等)中的每个用户都创建一个对应的Django User对象。 您可以提前写一个脚本来完成这个工作,也可以在某个用户第一次登陆的时候在 authenticate 方法中进行实现。

以下是一个示例后台程序,该后台用于认证定义在 setting.py 文件中的username和password变量,并且在该用户第一次认证的时候创建一个相应的Django User 对象。

from django.conf import settings
from django.contrib.auth.models import User, check_password

class SettingsBackend(object):
  """
  Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

  Use the login name, and a hash of the password. For example:

  ADMIN_LOGIN = 'admin'
  ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de'
  """
  def authenticate(self, username=None, password=None):
    login_valid = (settings.ADMIN_LOGIN == username)
    pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
    if login_valid and pwd_valid:
      try:
        user = User.objects.get(username=username)
      except User.DoesNotExist:
        # Create a new user. Note that we can set password
        # to anything, because it won't be checked; the password
        # from settings.py will.
        user = User(username=username, password='get from settings.py')
        user.is_staff = True
        user.is_superuser = True
        user.save()
      return user
    return None

  def get_user(self, user_id):
    try:
      return User.objects.get(pk=user_id)
    except User.DoesNotExist:
      return None

更多认证模块的后台, 参考Django文档。

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Python vs C: Lengkung pembelajaran dan kemudahan penggunaanPython vs C: Lengkung pembelajaran dan kemudahan penggunaanApr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python vs C: Pengurusan dan Kawalan MemoriPython vs C: Pengurusan dan Kawalan MemoriApr 19, 2025 am 12:17 AM

Python dan C mempunyai perbezaan yang signifikan dalam pengurusan dan kawalan memori. 1. Python menggunakan pengurusan memori automatik, berdasarkan pengiraan rujukan dan pengumpulan sampah, memudahkan kerja pengaturcara. 2.C memerlukan pengurusan memori manual, memberikan lebih banyak kawalan tetapi meningkatkan risiko kerumitan dan kesilapan. Bahasa mana yang harus dipilih harus berdasarkan keperluan projek dan timbunan teknologi pasukan.

Python untuk pengkomputeran saintifik: rupa terperinciPython untuk pengkomputeran saintifik: rupa terperinciApr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python dan C: Mencari alat yang betulPython dan C: Mencari alat yang betulApr 19, 2025 am 12:04 AM

Sama ada untuk memilih Python atau C bergantung kepada keperluan projek: 1) Python sesuai untuk pembangunan pesat, sains data, dan skrip kerana sintaks ringkas dan perpustakaan yang kaya; 2) C sesuai untuk senario yang memerlukan prestasi tinggi dan kawalan asas, seperti pengaturcaraan sistem dan pembangunan permainan, kerana kompilasi dan pengurusan memori manualnya.

Python untuk sains data dan pembelajaran mesinPython untuk sains data dan pembelajaran mesinApr 19, 2025 am 12:02 AM

Python digunakan secara meluas dalam sains data dan pembelajaran mesin, terutamanya bergantung pada kesederhanaannya dan ekosistem perpustakaan yang kuat. 1) PANDAS digunakan untuk pemprosesan dan analisis data, 2) Numpy menyediakan pengiraan berangka yang cekap, dan 3) SCIKIT-Learn digunakan untuk pembinaan dan pengoptimuman model pembelajaran mesin, perpustakaan ini menjadikan Python alat yang ideal untuk sains data dan pembelajaran mesin.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

EditPlus versi Cina retak

EditPlus versi Cina retak

Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa