cari
Rumahpembangunan bahagian belakangTutorial PythonPython的Scrapy爬虫框架简单学习笔记

 一、简单配置,获取单个网页上的内容。
(1)创建scrapy项目

scrapy startproject getblog

(2)编辑 items.py

# -*- coding: utf-8 -*-
 
# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html
 
from scrapy.item import Item, Field
 
class BlogItem(Item):
  title = Field()
  desc = Field()

    (3)在 spiders 文件夹下,创建 blog_spider.py

需要熟悉下xpath选择,感觉跟JQuery选择器差不多,但是不如JQuery选择器用着舒服( w3school教程: http://www.w3school.com.cn/xpath/  )。

# coding=utf-8
 
from scrapy.spider import Spider
from getblog.items import BlogItem
from scrapy.selector import Selector
 
 
class BlogSpider(Spider):
  # 标识名称
  name = 'blog'
  # 起始地址
  start_urls = ['http://www.cnblogs.com/']
 
  def parse(self, response):
    sel = Selector(response) # Xptah 选择器
    # 选择所有含有class属性,值为‘post_item'的div 标签内容
    # 下面的 第2个div 的 所有内容
    sites = sel.xpath('//div[@class="post_item"]/div[2]')
    items = []
    for site in sites:
      item = BlogItem()
      # 选取h3标签下,a标签下,的文字内容 ‘text()'
      item['title'] = site.xpath('h3/a/text()').extract()
      # 同上,p标签下的 文字内容 ‘text()'
      item['desc'] = site.xpath('p[@class="post_item_summary"]/text()').extract()
      items.append(item)
    return items

(4)运行,

scrapy crawl blog # 即可

(5)输出文件。

        在 settings.py 中进行输出配置。

# 输出文件位置
FEED_URI = 'blog.xml'
# 输出文件格式 可以为 json,xml,csv
FEED_FORMAT = 'xml'

    输出位置为项目根文件夹下。

二、基本的 -- scrapy.spider.Spider

    (1)使用交互shell

dizzy@dizzy-pc:~$ scrapy shell "http://www.baidu.com/"
2014-08-21 04:09:11+0800 [scrapy] INFO: Scrapy 0.24.4 started (bot: scrapybot)
2014-08-21 04:09:11+0800 [scrapy] INFO: Optional features available: ssl, http11, django
2014-08-21 04:09:11+0800 [scrapy] INFO: Overridden settings: {'LOGSTATS_INTERVAL': 0}
2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled extensions: TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState
2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, MetaRefreshMiddleware, HttpCompressionMiddleware, RedirectMiddleware, CookiesMiddleware, ChunkedTransferMiddleware, DownloaderStats
2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware
2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled item pipelines: 
2014-08-21 04:09:11+0800 [scrapy] DEBUG: Telnet console listening on 127.0.0.1:6024
2014-08-21 04:09:11+0800 [scrapy] DEBUG: Web service listening on 127.0.0.1:6081
2014-08-21 04:09:11+0800 [default] INFO: Spider opened
2014-08-21 04:09:12+0800 [default] DEBUG: Crawled (200) <GET http://www.baidu.com/> (referer: None)
[s] Available Scrapy objects:
[s]  crawler  <scrapy.crawler.Crawler object at 0xa483cec>
[s]  item    {}
[s]  request  <GET http://www.baidu.com/>
[s]  response  <200 http://www.baidu.com/>
[s]  settings  <scrapy.settings.Settings object at 0xa0de78c>
[s]  spider   <Spider 'default' at 0xa78086c>
[s] Useful shortcuts:
[s]  shelp()      Shell help (print this help)
[s]  fetch(req_or_url) Fetch request (or URL) and update local objects
[s]  view(response)  View response in a browser
 
>>> 
  # response.body 返回的所有内容
  # response.xpath('//ul/li') 可以测试所有的xpath内容
    More important, if you type response.selector you will access a selector object you can use to
query the response, and convenient shortcuts like response.xpath() and response.css() mapping to
response.selector.xpath() and response.selector.css()

        也就是可以很方便的,以交互的形式来查看xpath选择是否正确。之前是用FireFox的F12来选择的,但是并不能保证每次都能正确的选择出内容。

        也可使用:

scrapy shell 'http://scrapy.org' --nolog
# 参数 --nolog 没有日志

    (2)示例

from scrapy import Spider
from scrapy_test.items import DmozItem
 
 
class DmozSpider(Spider):
  name = 'dmoz'
  allowed_domains = ['dmoz.org']
  start_urls = ['http://www.dmoz.org/Computers/Programming/Languages/Python/Books/',
         'http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/,'
         '']
 
  def parse(self, response):
    for sel in response.xpath('//ul/li'):
      item = DmozItem()
      item['title'] = sel.xpath('a/text()').extract()
      item['link'] = sel.xpath('a/@href').extract()
      item['desc'] = sel.xpath('text()').extract()
      yield item

    (3)保存文件

        可以使用,保存文件。格式可以 json,xml,csv

scrapy crawl -o 'a.json' -t 'json'

    (4)使用模板创建spider

scrapy genspider baidu baidu.com
 
# -*- coding: utf-8 -*-
import scrapy
 
 
class BaiduSpider(scrapy.Spider):
  name = "baidu"
  allowed_domains = ["baidu.com"]
  start_urls = (
    'http://www.baidu.com/',
  )
 
  def parse(self, response):
    pass

    这段先这样吧,记得之前5个的,现在只能想起4个来了. :-(

    千万记得随手点下保存按钮。否则很是影响心情的(⊙o⊙)!

三、高级 -- scrapy.contrib.spiders.CrawlSpider

例子

#coding=utf-8
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors import LinkExtractor
import scrapy
 
 
class TestSpider(CrawlSpider):
  name = 'test'
  allowed_domains = ['example.com']
  start_urls = ['http://www.example.com/']
  rules = (
    # 元组
    Rule(LinkExtractor(allow=('category\.php', ), deny=('subsection\.php', ))),
    Rule(LinkExtractor(allow=('item\.php', )), callback='pars_item'),
  )
 
  def parse_item(self, response):
    self.log('item page : %s' % response.url)
    item = scrapy.Item()
    item['id'] = response.xpath('//td[@id="item_id"]/text()').re('ID:(\d+)')
    item['name'] = response.xpath('//td[@id="item_name"]/text()').extract()
    item['description'] = response.xpath('//td[@id="item_description"]/text()').extract()
    return item

其他的还有 XMLFeedSpider

  • class scrapy.contrib.spiders.XMLFeedSpider
  • class scrapy.contrib.spiders.CSVFeedSpider
  • class scrapy.contrib.spiders.SitemapSpider

四、选择器

  >>> from scrapy.selector import Selector
  >>> from scrapy.http import HtmlResponse

    可以灵活的使用 .css() 和 .xpath() 来快速的选取目标数据

关于选择器,需要好好研究一下。xpath() 和 css() ,还要继续熟悉 正则.

    当通过class来进行选择的时候,尽量使用 css() 来选择,然后再用 xpath() 来选择元素的熟悉

五、Item Pipeline

Typical use for item pipelines are:
    • cleansing HTML data # 清除HTML数据
    • validating scraped data (checking that the items contain certain fields) # 验证数据
    • checking for duplicates (and dropping them) # 检查重复
    • storing the scraped item in a database # 存入数据库
    (1)验证数据

from scrapy.exceptions import DropItem
 
class PricePipeline(object):
  vat_factor = 1.5
  def process_item(self, item, spider):
    if item['price']:
      if item['price_excludes_vat']:
        item['price'] *= self.vat_factor
    else:
      raise DropItem('Missing price in %s' % item)

    (2)写Json文件

import json
 
class JsonWriterPipeline(object):
  def __init__(self):
    self.file = open('json.jl', 'wb')
  def process_item(self, item, spider):
    line = json.dumps(dict(item)) + '\n'
    self.file.write(line)
    return item

    (3)检查重复

from scrapy.exceptions import DropItem
 
class Duplicates(object):
  def __init__(self):
    self.ids_seen = set()
  def process_item(self, item, spider):
    if item['id'] in self.ids_seen:
      raise DropItem('Duplicate item found : %s' % item)
    else:
      self.ids_seen.add(item['id'])
      return item

    至于将数据写入数据库,应该也很简单。在 process_item 函数中,将 item 存入进去即可了。

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dalam Tindakan: Contoh dunia nyataPython dalam Tindakan: Contoh dunia nyataApr 18, 2025 am 12:18 AM

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Penggunaan Utama Python: Gambaran Keseluruhan KomprehensifPenggunaan Utama Python: Gambaran Keseluruhan KomprehensifApr 18, 2025 am 12:18 AM

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

PhpStorm versi Mac

PhpStorm versi Mac

Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Penyesuai Pelayan SAP NetWeaver untuk Eclipse

Integrasikan Eclipse dengan pelayan aplikasi SAP NetWeaver.

Versi Mac WebStorm

Versi Mac WebStorm

Alat pembangunan JavaScript yang berguna