cari
Rumahpembangunan bahagian belakangTutorial Python用Python实现斐波那契(Fibonacci)函数

Fibonacci斐波那契数列,很简单,就是一个递归嘛,学任何编程语言可能都会做一下这个。

最近在玩Python,在粗略的看了一下Learning Python和Core Python之后,偶然发现网上有个帖子Python程序员的进化写的很有意思。于是打算仿照一篇,那篇帖子用了十余种方法完成一个阶乘函数,我在这里会用九种不同的风格写出一个Fibonacci函数。

要求很简单,输入n,输出第n个Fibonacci数,n为正整数

下面是这九种不同的风格:

1)第一次写程序的Python程序员:

def fib(n):
  return nth fibonacci number

说明:
第一次写程序的人往往遵循人类语言的语法而不是编程语言的语法,就拿我一个编程很猛的哥们来说,他写的第一个判断闰年的程序,里面直接是这么写的:如果year是闰年,输出year是闰年,否则year不是闰年。

2)刚学Python不久的的C程序员:

def fib(n):#{
 if n<=2 :
  return 1;
 else:
  return fib(n-1)+fib(n-2);
#}

说明:
在刚接触Python时,用缩进而非大括号的方式来划分程序块这种方式我是很不适应的,而且每个语句后面没有结束符,所以每次写完一个Python函数之后干的第一件事一般就是一边注释大括号,一边添加漏掉的冒号。

3)懒散的Python程序员:

def fib(n):
  return 1 and n<=2 or fib(n-1)+fib(n-2)

说明:
看了Learning Python之后,才知道Python没有三元操作符?,不过鉴于Python里bool值比较特殊(有点像C,非零即真,非空即真),再加上Python的逻辑语句也是支持短路求值(Short-Circuit Evaluation)的,这就可以写出一个仿?语句出来。

4)更懒的Python程序员:

 fib=lambda n:1 if n<=2 else fib(n-1)+fib(n-2)

说明:
lambda关键字我曾在C#和Scheme里面用过,Python里面的lambda比C#里简便,并很像Scheme里的用法,所以很快就适应了。在用Python Shell声明一些小函数时经常用这种写法。

5)刚学完数据结构的Python程序员:

def fib(n):
 x,y=0,1
 while(n):
  x,y,n=y,x+y,n-1
 return x

说明:
前面的Fibonacci函数都是树形递归的实现,哪怕是学一点算法就应该知道这种递归的低效了。在这里从树形递归改为对应的迭代可以把效率提升不少。
Python的元组赋值特性是我很喜欢的一个东东,这玩意可以把代码简化不少。举个例子,以前的tmp=a;a=b;b=tmp;可以直接用一句a,b=b,a实现,既简洁又明了。

6)正在修SICP课程的Python程序员:

def fib(n):
  def fib_iter(n,x,y):
   if n==0 : return x
   else : return fib_iter(n-1,y,x+y)

  return fib_iter(n,0,1)

说明:
在这里我使用了Scheme语言中很常见的尾递归(Tail-recursion)写法。Scheme里面没有迭代,但可以用不变量和尾递归来模拟迭代,从而实现相同的效果。不过我还不清楚Python有没有对尾递归做相应的优化,回头查一查。
PS:看过SICP的同学,一眼就能看出,这个程序其实就是SICP第一章里的一个例子。

7)好耍小聪明的Python程序员:

fib=lambda n,x=0,y=1:x if not n else f(n-1,y,x+y)

说明:
基本的逻辑和上面的例子一样,都是尾递归写法。主要的区别就是利用了Python提供的默认参数和三元操作符,从而把代码简化至一行。至于默认参数,学过C++的同学都知道这玩意,至于C#4.0也引入了这东东。

8)刚修完线性代数的Python程序员:

def fib(n):
 def m1(a,b):
  m=[[],[]]
  m[0].append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m[0].append(a[0][0]*b[0][1]+a[0][1]*b[1][1])
  m[1].append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  m[1].append(a[1][0]*b[1][0]+a[1][1]*b[1][1])
  return m
 def m2(a,b):
  m=[]
  m.append(a[0][0]*b[0][0]+a[0][1]*b[1][0])
  m.append(a[1][0]*b[0][0]+a[1][1]*b[1][0])
  return m
 return m2(reduce(m1,[[[0,1],[1,1]] for i in range(n)]),[[0],[1]])[0]

说明:
这段代码就不像之前的代码那样清晰了,所以先介绍下原理(需要一点线性代数知识):
首先看一下之前的迭代版本的Fibonacci函数,很容易可以发现存在一个变换:y->x, x+y->y。换一个角度,就是[x,y]->[y,x+y]。
在这里,我声明一个二元向量[x,y]T,它通过一个变换得到[y,x+y]T,可以很容易得到变换矩阵是[[1,0],[1,1]],也就是说:[[1,0],[1,1]]*[x,y]T=[y,x+y]T
令二元矩阵A=[[1,0],[1,1]],二元向量x=[0,1]T,容易知道Ax的结果就是下一个Fibonacci数值,即:
Ax=[fib(1),fib(2)]T
亦有:
Ax=[fib(2),fib(3)]T
………………
以此类推,可以得到:

A&#8319;x=[fib(n),fib(n-1)]T

也就是说可以通过对二元向量[0,1]T进行n次A变换,从而得到[fib(n),fib(n+1)]T,从而得到fib(n)。

在这里我定义了一个二元矩阵的相乘函数m1,以及一个在二元向量上的变换m2,然后利用reduce操作完成一个连乘操作得到Aⁿx,最后得到fib(n)。

9)准备参加ACM比赛的Python程序员:

 
def fib(n):
 lhm=[[0,1],[1,1]]
 rhm=[[0],[1]]
 em=[[1,0],[0,1]]
 #multiply two matrixes
 def matrix_mul(lhm,rhm):
  #initialize an empty matrix filled with zero
  result=[[0 for i in range(len(rhm[0]))] for j in range(len(rhm))]
  #multiply loop
  for i in range(len(lhm)):
   for j in range(len(rhm[0])):
    for k in range(len(rhm)):
     result[i][j]+=lhm[i][k]*rhm[k][j]
  return result
 
 def matrix_square(mat):
  return matrix_mul(mat,mat)
 #quick transform
 def fib_iter(mat,n):
  if not n:
   return em
  elif(n%2):
   return matrix_mul(mat,fib_iter(mat,n-1))
  else:
   return matrix_square(fib_iter(mat,n/2))
 return matrix_mul(fib_iter(lhm,n),rhm)[0][0]

说明:

看过上一个fib函数就比较容易理解这一个版本了,这个版本同样采用了二元变换的方式求fib(n)。不过区别在于这个版本的复杂度是lgn,而上一个版本则是线性的。

这个版本的不同之处在于,它定义了一个矩阵的快速求幂操作fib_iter,原理很简单,可以类比自然数的快速求幂方法,所以这里就不多说了。

PS:虽然说是ACM版本,不过说实话我从来没参加过那玩意,毕竟自己算法太水了,那玩意又太高端……只能在这里YY一下鸟~

python中,最基本的那种递归(如下fib1)效率太低了,只要n数字大了运算时间就会很长;而通过将计算的指保存到一个dict中,后面计算时直接拿来使用,这种方式成为备忘(memo),如下面的fib2函数所示,则会发现效率大大提高。

在n=10以内时,fib1和fab2运行时间都很短看不出差异,但当n=40时,就太明显了,fib1运行花了35秒,fab2运行只花费了0.00001秒。
n=40时,输出如下:

jay@jay-linux:~/workspace/python.git/py2014$ python fibonacci.py 
2014-10-16 16:28:35.176396
fib1(40)=102334155
2014-10-16 16:29:10.479953
fib2(40)=102334155
2014-10-16 16:29:10.480035

这两个计算Fibonacci数列的函数,如下:https://github.com/smilejay/python/blob/master/py2014/fibonacci.py

import datetime

def fib1(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib1(n - 1) + fib1(n - 2)
 
known = {0: 0, 1: 1}
 
def fib2(n):
  if n in known:
    return known[n]
 
  res = fib2(n - 1) + fib2(n - 2)
  known[n] = res
  return res

if __name__ == '__main__':
  n = 40
  print(datetime.datetime.now())
  print('fib1(%d)=%d' % (n, fib1(n)))
  print(datetime.datetime.now())
  print('fib2(%d)=%d' % (n, fib2(n)))
  print(datetime.datetime.now())

后记:

由于刚学习Python没多久,所以对其各种特性的掌握还不够熟练。与其说是我在用Python写程序,倒不如说我是在用C,C++,C#或是Scheme来写程序。至于传说中的Pythonic way,我现在还没有什么体会,毕竟还没用Python写过什么真正的程序。
Learning Python和Core Python都是不错的Python入门书籍,前者更适合没有编程基础的人阅读。
Python是最好的初学编程入门语言,没有之一。所以它可以取代Scheme成为MIT的计算机编程入门语言。

Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Pembelajaran Python: Adakah 2 jam kajian harian mencukupi?Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python untuk Pembangunan Web: Aplikasi UtamaPython untuk Pembangunan Web: Aplikasi UtamaApr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

Python vs C: Meneroka Prestasi dan KecekapanPython vs C: Meneroka Prestasi dan KecekapanApr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dalam Tindakan: Contoh dunia nyataPython dalam Tindakan: Contoh dunia nyataApr 18, 2025 am 12:18 AM

Aplikasi dunia sebenar Python termasuk analisis data, pembangunan web, kecerdasan buatan dan automasi. 1) Dalam analisis data, Python menggunakan panda dan matplotlib untuk memproses dan memvisualisasikan data. 2) Dalam pembangunan web, kerangka Django dan Flask memudahkan penciptaan aplikasi web. 3) Dalam bidang kecerdasan buatan, tensorflow dan pytorch digunakan untuk membina dan melatih model. 4) Dari segi automasi, skrip python boleh digunakan untuk tugas -tugas seperti menyalin fail.

Penggunaan Utama Python: Gambaran Keseluruhan KomprehensifPenggunaan Utama Python: Gambaran Keseluruhan KomprehensifApr 18, 2025 am 12:18 AM

Python digunakan secara meluas dalam bidang sains data, pembangunan web dan bidang skrip automasi. 1) Dalam sains data, Python memudahkan pemprosesan dan analisis data melalui perpustakaan seperti numpy dan panda. 2) Dalam pembangunan web, rangka kerja Django dan Flask membolehkan pemaju dengan cepat membina aplikasi. 3) Dalam skrip automatik, kesederhanaan Python dan perpustakaan standard menjadikannya ideal.

Tujuan utama python: fleksibiliti dan kemudahan penggunaanTujuan utama python: fleksibiliti dan kemudahan penggunaanApr 17, 2025 am 12:14 AM

Fleksibiliti Python dicerminkan dalam sokongan multi-paradigma dan sistem jenis dinamik, sementara kemudahan penggunaan berasal dari sintaks mudah dan perpustakaan standard yang kaya. 1. Fleksibiliti: Menyokong pengaturcaraan berorientasikan objek, fungsional dan prosedur, dan sistem jenis dinamik meningkatkan kecekapan pembangunan. 2. Kemudahan Penggunaan: Tatabahasa adalah dekat dengan bahasa semulajadi, perpustakaan standard merangkumi pelbagai fungsi, dan memudahkan proses pembangunan.

Python: Kekuatan pengaturcaraan serba bolehPython: Kekuatan pengaturcaraan serba bolehApr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

Belajar python dalam 2 jam sehari: panduan praktikalBelajar python dalam 2 jam sehari: panduan praktikalApr 17, 2025 am 12:05 AM

Ya, pelajari Python dalam masa dua jam sehari. 1. Membangunkan pelan kajian yang munasabah, 2. Pilih sumber pembelajaran yang betul, 3 menyatukan pengetahuan yang dipelajari melalui amalan. Langkah -langkah ini dapat membantu anda menguasai Python dalam masa yang singkat.

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang laluBy尊渡假赌尊渡假赌尊渡假赌

Alat panas

VSCode Windows 64-bit Muat Turun

VSCode Windows 64-bit Muat Turun

Editor IDE percuma dan berkuasa yang dilancarkan oleh Microsoft

MantisBT

MantisBT

Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver Mac版

Dreamweaver Mac版

Alat pembangunan web visual

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.