Rumah > Artikel > pangkalan data > 基于12c in-memory新特性的SQL优化比拼
在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!
在本次中#2014年Orcl-Con甲骨文控活动#引入了一个利用12c in-memory特性优化查询语句的workshop ,在不考虑索引等特性的前提下,仅仅使用12c IMCC特性,崔胄同学利用inmemory和并行特性将原本需要1分钟运行的SQL,优化到1.37秒,提升数十倍,成功赢得ipad!
该次SQL优化比拼的?原帖地址http://t.cn/RzURLTJ
OKAY 我们来优化一下, 既然索引,物化视图等传统技术无法使用,我们只能使用使用一些oracle的大数据处理技术来提高性能 首先创建表 scripts 可以查看 xxxxxxxx 这里提一下, 在创建表的时候使用pctfree 0 来适当的降低了逻辑读。 创建完毕 COUNT(*)||'TIME_ROWS' 58432 time_rows 29402976 sales_rows 1776000 customers_rows 160 channles_rows 创建完后 跑了一下 no tuning 172706 consistent gets Elapsed: 00:00:22.11 oooooopss~ 22秒 看来需要优化 开始使用 in-memory 组件 来优化 SQL> select * from v$version; BANNER Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production SQL> show parameter inmemory NAME TYPE VALUE ------------------------------------ --------------------------------- ------------------------------ inmemory_clause_default string inmemory_force string DEFAULT inmemory_max_populate_servers integer 7 inmemory_query string ENABLE inmemory_size big integer 16G inmemory_trickle_repopulate_servers_ integer 1 percent optimizer_inmemory_aware boolean TRUE 如果内存有限 可以适当的只存放 需要的 列来降低使用memory alter table SHOUG.times inmemory; alter table SHOUG.sales inmemory; alter table shoug.sales no inmemory(PROD_ID,PROMO_ID,QUANTITY_SOLD); alter table shoug.customers inmemory; alter table SHOUG.channels inmemory; Statistics 41 recursive calls 17 db block gets 54 consistent gets 2 physical reads 1188 redo size 1584 bytes sent via SQLNet to client 562 bytes received via SQLNet from client 3 SQL*Net roundtrips to/from client 5 sorts (memory) 0 sorts (disk) 24 rows processed Elapsed: 00:00:19.70 可以看到 物理读几乎已经很弱了, 但是速度还是不快 优化CPU使用, 可以看到 inmemory 使用后 cpu 使用率达到了100% 但是, 可以看到等待全落在了 单颗 cpu上 所以根据数据量的大小, 来设置并行度 conn shoug/oracle alter table shoug.sales parallel 8; alter table shoug.times parallel 1; alter table shoug.customers parallel 8; alter table shoug.channel parallel 4; select table_name,degree from user_tables; set timing on SELECT /* use inmemory / /+parallel (shoug.customers 8)*/ c.cust_city, t.calendar_quarter_desc, SUM(s.amount_sold) sales_amount FROM SHOUG.sales s, SHOUG.times t, SHOUG.customers c WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id AND c.cust_state_province = 'FL' AND t.calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12') AND s.time_id IN (SELECT time_id FROM SHOUG.times WHERE calendar_quarter_desc IN ('2000-01', '2000-02', '1999-12')) AND s.cust_id IN (SELECT cust_id FROM SHOUG.customers WHERE cust_state_province = 'FL') AND s.channel_id IN (SELECT channel_id FROM SHOUG.channels WHERE channel_desc = 'Direct Sales') GROUP BY c.cust_city, t.calendar_quarter_desc; 24 rows selected. Elapsed: 00:00:01.37 Statistics 203 recursive calls 0 db block gets 254 consistent gets 0 physical reads 0 redo size 1574 bytes sent via SQLNet to client 562 bytes received via SQLNet from client 3 SQL*Net roundtrips to/from client 0 sorts (memory) [root@db ~]# top top - 23:51:34 up 6 days, 18:18, 6 users, load average: 0.65, 0.17, 0.15 Tasks: 391 total, 3 running, 387 sleeping, 0 stopped, 1 zombie Cpu0 : 23.3%us, 0.0%sy, 0.0%ni, 76.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 23.7%us, 0.3%sy, 0.0%ni, 76.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu3 : 22.3%us, 0.0%sy, 0.0%ni, 77.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu4 : 54.8%us, 0.7%sy, 0.0%ni, 44.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu5 : 22.1%us, 0.0%sy, 0.0%ni, 77.9%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 24.3%us, 0.0%sy, 0.0%ni, 75.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu7 : 22.6%us, 0.3%sy, 0.0%ni, 77.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 32882416k total, 32061328k used, 821088k free, 13416k buffers Swap: 8388600k total, 52k used, 8388548k free, 30221056k cached 可以看到cpu使用率达到了30% 以上, 并且, 已经没有内存排序 PS: 恭喜 oracle 在12.1.0.2 版本内 以inmemory 列存储的方式 推出了 vector计算方式, 打破了actian vector db 在大数据市场独领风骚的格局。
Related posts:
原文地址:基于12c in-memory新特性的SQL优化比拼, 感谢原作者分享。