By Lars Hofhansl Updated (again) Wednesday, January 25th, 2012. As I painfully worked through HBASE-5229 I realized that HBase already has all the building blocks needed for complex (local) transactions. What's important here is that (see
By Lars HofhanslUpdated (again) Wednesday, January 25th, 2012.
As I painfully worked through HBASE-5229 I realized that HBase already has all the building blocks needed for complex (local) transactions.
What's important here is that (see my introduction to HBase):
- HBase ensures atomicity for operations for the same row key
- HBase keys have internal structure: (row-key, column family, column, ...)
// all columns whose identifier starts with "abc"
Filter f = new ColumnRangeFilter(Bytes.toBytes("abc"), true,
Bytes.toBytes("abd"), false);
// all columns whose identifier sorts after "test"
Filter f = new ColumnRangeFilter(Bytes.toBytes("test"), true,
null, true);
So this allows to search (scan) inside a row by column identifier just as HBase allows searching by row key.
A client application can exploit this to achieve transactions by grouping all entities that can participate in the same transaction into a single row (and single column family).
Then using prefixes of the column identifiers can be used to define rows inside that group. Basically the search criteria for keys was moved one level down to the column identifier.
Say we wanted to implement a store with transactional tables that contain rows and columns. One way to doing this with HBase as follows:
- the HBase row-key/column-family maps to a "table"
- a prefix of the HBase column identifier maps to a "row"
- the rest of the HBase column identifier identifies the "column"
This leads to potentially wide HBase rows with many columns. The missing piece is allowing a Scan to efficiently retrieve a slice of a wide row.
This where ColumnRangeFilter comes into play. This filter seeks efficiently into the row by seeking ahead to the first HBase block that contains the first KeyValue (or cell) for that column.
Let's model a table "pets" this way. And let's say a pet has a name and a species. The HBase key for entries would look like this:
(table, CF1, rowA|column1) -> value for column1 in rowA
The code would look something like this:
(apologies for the initial incorrect code that I had posted here)
HTable t = ...;
Scan s = ...;
s.setStartRow("pets");
s.setStopRow("pets");
// get all columns for my pet "fluffy".
Filter f = new ColumnRangeFilter(Bytes.toBytes("fluffy"), true,
Bytes.toBytes("fluffz"), false);
s.setFilter(f);
s.setBatch(20); // avoid getting all columns for the HBase row
ResultScanner rs = t.getScanner(s);
for (Result r = rs.next(); r != null; r = rs.next()) {
// r will now have all HBase columns that start with "fluffy",
// which would represent a single rowfor (KeyValue kv : r.raw()) {
// each kv represent - the latest version of - a column
}
}
The downside of this is that HBase achieves atomicity by collocating all cells with the same row-key, so it has to be hosted by a single region server.
原文地址:HBase intra row scanning, 感谢原作者分享。

MySQL sesuai untuk pemula untuk mempelajari kemahiran pangkalan data. 1. Pasang alat pelayan dan klien MySQL. 2. Memahami pertanyaan SQL asas, seperti SELECT. 3. Operasi data induk: Buat jadual, masukkan, kemas kini, dan padam data. 4. Belajar Kemahiran Lanjutan: Fungsi Subquery dan Window. 5. Debugging dan Pengoptimuman: Semak sintaks, gunakan indeks, elakkan pilih*, dan gunakan had.

MySQL dengan cekap menguruskan data berstruktur melalui struktur jadual dan pertanyaan SQL, dan melaksanakan hubungan antara meja melalui kunci asing. 1. Tentukan format data dan taip apabila membuat jadual. 2. Gunakan kunci asing untuk mewujudkan hubungan antara jadual. 3. Meningkatkan prestasi melalui pengindeksan dan pengoptimuman pertanyaan. 4. Secara kerap sandaran dan memantau pangkalan data untuk memastikan pengoptimuman keselamatan data dan prestasi.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka yang digunakan secara meluas dalam pembangunan web. Ciri -ciri utamanya termasuk: 1. Menyokong pelbagai enjin penyimpanan, seperti InnoDB dan Myisam, sesuai untuk senario yang berbeza; 2. Menyediakan fungsi replikasi master-hamba untuk memudahkan pengimbangan beban dan sandaran data; 3. Meningkatkan kecekapan pertanyaan melalui pengoptimuman pertanyaan dan penggunaan indeks.

SQL digunakan untuk berinteraksi dengan pangkalan data MySQL untuk merealisasikan penambahan data, penghapusan, pengubahsuaian, pemeriksaan dan reka bentuk pangkalan data. 1) SQL Melaksanakan operasi data melalui Pilih, Masukkan, Kemas kini, Padam Penyataan; 2) Gunakan pernyataan membuat, mengubah, drop untuk reka bentuk dan pengurusan pangkalan data; 3) Pertanyaan kompleks dan analisis data dilaksanakan melalui SQL untuk meningkatkan kecekapan membuat keputusan perniagaan.

Operasi asas MySQL termasuk membuat pangkalan data, jadual, dan menggunakan SQL untuk melakukan operasi CRUD pada data. 1. Buat pangkalan data: createdatabasemy_first_db; 2. Buat Jadual: CreateTableBooks (Idintauto_IncrementPrimaryKey, Titlevarchar (100) NotNull, Authorvarchar (100) NotNull, Published_yearint); 3. Masukkan Data: InsertIntoBooks (Tajuk, Pengarang, Published_year) VA

Peranan utama MySQL dalam aplikasi web adalah untuk menyimpan dan mengurus data. 1.MYSQL dengan cekap memproses maklumat pengguna, katalog produk, rekod urus niaga dan data lain. 2. Melalui pertanyaan SQL, pemaju boleh mengekstrak maklumat dari pangkalan data untuk menghasilkan kandungan dinamik. 3.MYSQL berfungsi berdasarkan model klien-pelayan untuk memastikan kelajuan pertanyaan yang boleh diterima.

Langkah -langkah untuk membina pangkalan data MySQL termasuk: 1. Buat pangkalan data dan jadual, 2. Masukkan data, dan 3. Pertama, gunakan pernyataan CreatedataBase dan createtable untuk membuat pangkalan data dan jadual, kemudian gunakan pernyataan InsertInto untuk memasukkan data, dan akhirnya gunakan pernyataan PILIH untuk menanyakan data.

MySQL sesuai untuk pemula kerana mudah digunakan dan berkuasa. 1.MYSQL adalah pangkalan data relasi, dan menggunakan SQL untuk operasi CRUD. 2. Ia mudah dipasang dan memerlukan kata laluan pengguna root untuk dikonfigurasi. 3. Gunakan Masukkan, Kemas kini, Padam, dan Pilih untuk Melaksanakan Operasi Data. 4. Orderby, di mana dan menyertai boleh digunakan untuk pertanyaan yang kompleks. 5. Debugging memerlukan memeriksa sintaks dan gunakan Jelaskan untuk menganalisis pertanyaan. 6. Cadangan pengoptimuman termasuk menggunakan indeks, memilih jenis data yang betul dan tabiat pengaturcaraan yang baik.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Muat turun versi mac editor Atom
Editor sumber terbuka yang paling popular

MantisBT
Mantis ialah alat pengesan kecacatan berasaskan web yang mudah digunakan yang direka untuk membantu dalam pengesanan kecacatan produk. Ia memerlukan PHP, MySQL dan pelayan web. Lihat perkhidmatan demo dan pengehosan kami.

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan