cari
Rumahpangkalan datatutorial mysqlmysql随机查询效率优化

mysql随机查询效率优化

Jun 07, 2016 pm 03:34 PM
mysqlpengoptimumankecekapanPertanyaanPenyelidikanrawakperlukan

最近由于需要研究了一下MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是: SELECT * FROM content ORDER BY RAND () LIMIT 1 【3万条记录查询花费 0.3745 秒(下同);从mysql slow query log看出“ORDER BY RAN


最近由于需要研究了一下MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:

<code><span>SELECT </span><span>*</span><span> FROM content ORDER BY RAND</span><span>()</span><span> LIMIT </span><span>1</span></code>

【3万条记录查询花费 0.3745 秒(下同);从mysql slow query log看出“ORDER BY RAND() ”全表扫描了2次!】

后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,仍然可以通过ORDER BY RAND()来实现随机。

但是真正测试一下才发现这样效率非常低。一个15万余条的库,查询5条数据,居然要8秒以上。查看官方手册,也说rand()放在ORDER BY 子句中会被执行多次,自然效率及很低。

搜索Google,采用JOIN,查询max(id) * rand()来随机获取数据。

<code><span>SELECT </span><span>*</span><span> 
FROM </span><span>`content`</span><span> AS t1 JOIN </span><span>(</span><span>SELECT ROUND</span><span>(</span><span>RAND</span><span>()</span><span>*</span><span>(</span><span>SELECT MAX</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>))</span><span> AS id</span><span>)</span><span> AS t2 
WHERE t1</span><span>.</span><span>id </span><span>>=</span><span> t2</span><span>.</span><span>id 
ORDER BY t1</span><span>.</span><span>id ASC LIMIT </span><span>1</span><span>;</span></code>

【查询花费 0.0008 秒,飘易认为可以推荐使用这个语句!!】

但是这样会产生连续的5条记录。解决办法只能是每次查询一条,查询5次。即便如此也值得,因为15万条的表,查询只需要0.01秒不到。

有一个方法:

<code><span>SELECT </span><span>*</span><span> FROM </span><span>`content`</span><span> AS a JOIN </span><span>(</span><span> SELECT MAX</span><span>(</span><span> ID </span><span>)</span><span> AS ID FROM </span><span>`content`</span><span>)</span><span> AS b ON </span><span>(</span><span> a</span><span>.</span><span>ID </span><span>>=</span><span> FLOOR</span><span>(</span><span> b</span><span>.</span><span>ID </span><span>*</span><span> RAND</span><span>(</span><span>)</span><span>)</span><span>)</span><span> LIMIT </span><span>5</span><span>;</span></code>

上面这种方式保证了一定范围内的随机,查询花费 0.4265 秒,也不推荐。

下面的语句,mysql的论坛上有人使用

<code><span>SELECT </span><span>*</span><span> 
FROM </span><span>`content`</span><span> 
WHERE id </span><span>>=</span><span>(</span><span>SELECT FLOOR</span><span>(</span><span> MAX</span><span>(</span><span>id</span><span>)</span><span>*</span><span> RAND</span><span>())</span><span> FROM </span><span>`content`</span><span>)</span><span> 
ORDER BY id LIMIT </span><span>1</span><span>;</span></code>

【查询花费 1.2254 秒,飘易强烈不推荐!因为实测后,3万行的表,这个语句竟然会扫描500万行!!】

跟上面的语句还是有很大差距。总觉有什么地方不正常。于是我把语句改写了一下。

<code><strong><span><span>SELECT </span><span>*</span><span> FROM </span><span>`content`</span><span> 
WHERE id </span><span>>=</span><span>(</span><span>SELECT floor</span><span>(</span><span>RAND</span><span>()</span><span>*</span><span>(</span><span>SELECT MAX</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>)))</span><span>  
ORDER BY id LIMIT </span><span>1</span><span>;</span></span></strong></code>

【查询花费 0.0012 秒】

这下,效率又提高了,查询时间只有0.01秒

最后,再把语句完善一下,加上MIN(id)的判断。我在最开始测试的时候,就是因为没有加上MIN(id)的判断,结果有一半的时间总是查询到表中的前面几行。

完整查询语句是:

<code><span>SELECT </span><span>*</span><span> FROM </span><span>`content`</span><span> 
WHERE id </span><span>>=</span><span>(</span><span>SELECT floor</span><span>(</span><span> RAND</span><span>()</span><span>*</span><span>((</span><span>SELECT MAX</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>)-(</span><span>SELECT MIN</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>))</span><span>+</span><span>(</span><span>SELECT MIN</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>)))</span><span>  
ORDER BY id LIMIT </span><span>1</span><span>;</span></code>

【查询花费 0.0012 秒】

<code><span>SELECT </span><span>*</span><span> 
FROM </span><span>`content`</span><span> AS t1 JOIN </span><span>(</span><span>SELECT ROUND</span><span>(</span><span>RAND</span><span>()</span><span>*</span><span>((</span><span>SELECT MAX</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>)-(</span><span>SELECT MIN</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>))+(</span><span>SELECT MIN</span><span>(</span><span>id</span><span>)</span><span> FROM </span><span>`content`</span><span>))</span><span> AS id</span><span>)</span><span> AS t2 
WHERE t1</span><span>.</span><span>id </span><span>>=</span><span> t2</span><span>.</span><span>id 
ORDER BY t1</span><span>.</span><span>id LIMIT </span><span>1</span><span>;</span></code>

【查询花费 0.0008 秒】

最后在php中对这两个语句进行分别查询10次,

前者花费时间 0.147433 秒

后者花费时间 0.015130 秒

看来采用JOIN的语法比直接在WHERE中使用函数效率还要高很多。(via)

======================================

【好了,最后飘易来总结下】:

第一种方案,即原始的 Order By Rand() 方法:

<code><span>$sql</span><span>=</span><span>"SELECT * FROM content ORDER BY rand() LIMIT 12"</span><span>;</span><span>
$result</span><span>=</span><span>mysql_query</span><span>(</span><span>$sql</span><span>,</span><span>$conn</span><span>);</span><span>
$n</span><span>=</span><span>1</span><span>;</span><span>
$rnds</span><span>=</span><span>''</span><span>;</span><span>while</span><span>(</span><span>$row</span><span>=</span><span>mysql_fetch_array</span><span>(</span><span>$result</span><span>)){</span><span>
$rnds</span><span>=</span><span>$rnds</span><span>.</span><span>$n</span><span>.</span><span>". <a href="show%22</span><span>.</span><span>%24row</span><span>%5B</span><span>" id><span>].</span><span>"-"</span><span>.</span><span>strtolower</span><span>(</span><span>trim</span><span>(</span><span>$row</span><span>[</span><span>'title'</span><span>])).</span><span>"'>"</span><span>.</span><span>$row</span><span>[</span><span>'title'</span><span>].</span><span>"</span></a><br>\n"</span><span>;</span><span>
$n</span><span>++;</span><span>}</span></code>

3万条数据查12条随机记录,需要0.125秒,随着数据量的增大,效率越来越低。

第二种方案,改进后的 JOIN 方法:

<code><span>for</span><span>(</span><span>$n</span><span>=</span><span>1</span><span>;</span><span>$n</span><span><span>12</span><span>;</span><span>$n</span><span>++){</span><span>
$sql</span><span>=</span><span>"SELECT * FROM `content` AS t1 
JOIN (SELECT ROUND(RAND() * (SELECT MAX(id) FROM `content`)) AS id) AS t2 
WHERE t1.id >= t2.id ORDER BY t1.id ASC LIMIT 1"</span><span>;</span><span>
$result</span><span>=</span><span>mysql_query</span><span>(</span><span>$sql</span><span>,</span><span>$conn</span><span>);</span><span>
$yi</span><span>=</span><span>mysql_fetch_array</span><span>(</span><span>$result</span><span>);</span><span>
$rnds </span><span>=</span><span> $rnds</span><span>.</span><span>$n</span><span>.</span><span>". <a href="show%22</span><span>.</span><span>%24yi</span><span>%5B</span><span>" id><span>].</span><span>"-"</span><span>.</span><span>strtolower</span><span>(</span><span>trim</span><span>(</span><span>$yi</span><span>[</span><span>'title'</span><span>])).</span><span>"'>"</span><span>.</span><span>$yi</span><span>[</span><span>'title'</span><span>].</span><span>"</span></a><br>\n"</span><span>;</span><span>}</span></span></code>

3万条数据查12条随机记录,需要0.004秒,效率大幅提升,比第一种方案提升了约30倍。缺点:多次select查询,IO开销大。

第三种方案,SQL语句先随机好ID序列,用 IN 查询(飘易推荐这个用法,IO开销小,速度最快):

<code><span>$sql</span><span>=</span><span>"SELECT MAX(id),MIN(id) FROM content"</span><span>;</span><span>
$result</span><span>=</span><span>mysql_query</span><span>(</span><span>$sql</span><span>,</span><span>$conn</span><span>);</span><span>
$yi</span><span>=</span><span>mysql_fetch_array</span><span>(</span><span>$result</span><span>);</span><span>
$idmax</span><span>=</span><span>$yi</span><span>[</span><span>0</span><span>];</span><span>
$idmin</span><span>=</span><span>$yi</span><span>[</span><span>1</span><span>];</span><span>
$idlist</span><span>=</span><span>''</span><span>;</span><span>for</span><span>(</span><span>$i</span><span>=</span><span>1</span><span>;</span><span>$i</span><span><span>20</span><span>;</span><span>$i</span><span>++){</span><span>if</span><span>(</span><span>$i</span><span>==</span><span>1</span><span>){</span><span> $idlist</span><span>=</span><span>mt_rand</span><span>(</span><span>$idmin</span><span>,</span><span>$idmax</span><span>);</span><span>}</span><span>else</span><span>{</span><span> $idlist</span><span>=</span><span>$idlist</span><span>.</span><span>','</span><span>.</span><span>mt_rand</span><span>(</span><span>$idmin</span><span>,</span><span>$idmax</span><span>);</span><span>}</span><span>}</span><span>  
$idlist2</span><span>=</span><span>"id,"</span><span>.</span><span>$idlist</span><span>;</span><span>
$sql</span><span>=</span><span>"select * from content where id in ($idlist) order by field($idlist2) LIMIT 0,12"</span><span>;</span><span> 
$result</span><span>=</span><span>mysql_query</span><span>(</span><span>$sql</span><span>,</span><span>$conn</span><span>);</span><span>
$n</span><span>=</span><span>1</span><span>;</span><span>
$rnds</span><span>=</span><span>''</span><span>;</span><span>while</span><span>(</span><span>$row</span><span>=</span><span>mysql_fetch_array</span><span>(</span><span>$result</span><span>)){</span><span>
$rnds</span><span>=</span><span>$rnds</span><span>.</span><span>$n</span><span>.</span><span>". <a href="show%22</span><span>.</span><span>%24row</span><span>%5B</span><span>" id><span>].</span><span>"-"</span><span>.</span><span>strtolower</span><span>(</span><span>trim</span><span>(</span><span>$row</span><span>[</span><span>'title'</span><span>])).</span><span>"'>"</span><span>.</span><span>$row</span><span>[</span><span>'title'</span><span>].</span><span>"</span></a><br>\n"</span><span>;</span><span>
$n</span><span>++;</span><span>}</span></span></code>

3万条数据查12条随机记录,需要0.001秒,效率比第二种方法又提升了4倍左右,比第一种方法提升120倍。注,这里使用了 order by

field($idlist2) 是为了不排序,否则 IN 是自动会排序的。缺点:有可能遇到ID被删除的情况,所以需要多选几个ID。

测试方法:

<code><span>$t </span><span>=</span><span> microtime</span><span>(</span><span>true</span><span>);</span><span>//执行语句</span><span>
echo microtime</span><span>(</span><span>true</span><span>)</span><span>-</span><span> $t</span><span>;</span></code>



参考:
http://blog.csdn.net/zxl315/article/details/2435368
http://jan.kneschke.de/projects/mysql/order-by-rand/
Kenyataan
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Bagaimanakah MySQL mengendalikan kesesuaian berbanding dengan RDBMS yang lain?Bagaimanakah MySQL mengendalikan kesesuaian berbanding dengan RDBMS yang lain?Apr 29, 2025 am 12:44 AM

Mysqlhandlesconcurencingusedixofrow-levelandTable-levellocking,, terutamanya terutamanya yang utama

Bagaimanakah MySQL mengendalikan urus niaga berbanding dengan pangkalan data hubungan lain?Bagaimanakah MySQL mengendalikan urus niaga berbanding dengan pangkalan data hubungan lain?Apr 29, 2025 am 12:37 AM

Mysqlhandlestransactionsefectivelytelytheinnodbengine, supportingAcidPropertiessimilartartgresqlandoracle.1) mysqlusesRepeatableReadastasthedefaultisolationlevel, whoScanbeadjustedtoreadcommitted

Apakah jenis data yang terdapat di MySQL?Apakah jenis data yang terdapat di MySQL?Apr 29, 2025 am 12:28 AM

Jenis data MySQL dibahagikan kepada jenis berangka, tarikh dan masa, rentetan, binari dan spatial. Memilih jenis yang betul dapat mengoptimumkan prestasi pangkalan data dan penyimpanan data.

Apakah beberapa amalan terbaik untuk menulis pertanyaan SQL yang cekap di MySQL?Apakah beberapa amalan terbaik untuk menulis pertanyaan SQL yang cekap di MySQL?Apr 29, 2025 am 12:24 AM

Amalan terbaik termasuk: 1) Memahami struktur data dan kaedah pemprosesan MySQL, 2) pengindeksan yang sesuai, 3) Elakkan pilih*, 4) Menggunakan jenis gabungan yang sesuai, 5) Gunakan subqueries dengan berhati -hati, 6) menganalisis pertanyaan dengan menjelaskan, 7) Pertimbangkan kesan pertanyaan pada sumber pelayan, 8) mengekalkan pangkalan data secara berkala. Amalan -amalan ini boleh membuat pertanyaan MySQL bukan sahaja cepat, tetapi juga kebolehpercayaan, skalabilitas dan kecekapan sumber.

Bagaimanakah MySQL berbeza dari PostgreSQL?Bagaimanakah MySQL berbeza dari PostgreSQL?Apr 29, 2025 am 12:23 AM

MySQLisbetterforspeedandsimplicity,suitableforwebapplications;PostgreSQLexcelsincomplexdatascenarioswithrobustfeatures.MySQLisidealforquickprojectsandread-heavytasks,whilePostgreSQLispreferredforapplicationsrequiringstrictdataintegrityandadvancedSQLf

Bagaimanakah MySQL mengendalikan replikasi data?Bagaimanakah MySQL mengendalikan replikasi data?Apr 28, 2025 am 12:25 AM

MySQL memproses replikasi data melalui tiga mod: replikasi asynchronous, semi-sinkron dan kumpulan. 1) Prestasi replikasi tak segerak tinggi tetapi data mungkin hilang. 2) Replikasi semi-sinkron meningkatkan keselamatan data tetapi meningkatkan latensi. 3) Replikasi kumpulan menyokong replikasi multi-tuan dan failover, sesuai untuk keperluan ketersediaan yang tinggi.

Bagaimanakah anda boleh menggunakan pernyataan Jelaskan untuk menganalisis prestasi pertanyaan?Bagaimanakah anda boleh menggunakan pernyataan Jelaskan untuk menganalisis prestasi pertanyaan?Apr 28, 2025 am 12:24 AM

Kenyataan Jelaskan boleh digunakan untuk menganalisis dan meningkatkan prestasi pertanyaan SQL. 1. Jalankan pernyataan Jelaskan untuk melihat pelan pertanyaan. 2. Menganalisis hasil output, perhatikan jenis akses, penggunaan indeks dan sertai pesanan. 3. Membuat atau menyesuaikan indeks berdasarkan hasil analisis, mengoptimumkan operasi gabungan, dan elakkan pengimbasan jadual penuh untuk meningkatkan kecekapan pertanyaan.

Bagaimana anda membuat sandaran dan memulihkan pangkalan data MySQL?Bagaimana anda membuat sandaran dan memulihkan pangkalan data MySQL?Apr 28, 2025 am 12:23 AM

Menggunakan mysqldump untuk sandaran logik dan mysqlenterpriseBackup untuk sandaran panas adalah cara yang berkesan untuk membuat sandaran pangkalan data MySQL. 1. Gunakan mysqldump untuk menyokong pangkalan data: mysqldump-usoot-pmydatabase> mydatabase_backup.sql. 2. Gunakan mysqlenterpriseBackup untuk sandaran panas: mysqlbackup-user = root-password = password-backup-dir =/to/to/backupbackup. Semasa pulih, gunakan kehidupan yang sepadan

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

MinGW - GNU Minimalis untuk Windows

MinGW - GNU Minimalis untuk Windows

Projek ini dalam proses untuk dipindahkan ke osdn.net/projects/mingw, anda boleh terus mengikuti kami di sana. MinGW: Port Windows asli bagi GNU Compiler Collection (GCC), perpustakaan import yang boleh diedarkan secara bebas dan fail pengepala untuk membina aplikasi Windows asli termasuk sambungan kepada masa jalan MSVC untuk menyokong fungsi C99. Semua perisian MinGW boleh dijalankan pada platform Windows 64-bit.

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

SublimeText3 Linux versi baharu

SublimeText3 Linux versi baharu

SublimeText3 Linux versi terkini

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Muat turun versi mac editor Atom

Muat turun versi mac editor Atom

Editor sumber terbuka yang paling popular